КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Предмет, задачи и методы генетики.
Тема № 6. Генетика как наука. Закономерности наследования признаков. Клеточная пролиферация и ее значение для медицины. Клеточная пролиферация – увеличение числа клеток путем митоза, приводящее к росту ткани, в отличие от другого способа увеличения ее массы (например, отек). У нервных клеток пролиферация отсутствует. Во взрослом организме продолжаются процессы развития, связанные с делением и специализацией клеток. Эти процессы могут быть как нормальными физиологическими, так и направленными на восстановление организма вследствие нарушения его целостности. Значение пролиферации в медицине определяется способностью клеток разных тканей к делению. С делением клеток связан процесс заживления ран и восстановление тканей после хирургических операций. Пролиферация клеток лежит в основе регенерации (восстановления) утраченных частей. Проблема регенерации представляет интерес для медицины, для восстановительной хирургии. Различают физиологическую, репаративную и патологическую регенерацию. Физиологическая – естественное восстановление клеток и тканей в онтогенезе. Например, смена эритроцитов, клеток кожного эпителия. Репаративная – восстановление после повреждения или гибели клеток и тканей. Патологическая – разрастание тканей не идентичных здоровым тканям. Например, разрастание рубцовой ткани на месте ожога, хряща – на месте перелома, размножение клеток соединительной ткани на месте мышечной ткани сердца, раковая опухоль. В последнее время принято разделять клетки тканей животных по способности к делению на три группы: лабильные, стабильные и статические. К лабильным относятся клетки, которые быстро и легко обновляются в процессе жизнедеятельности организма (клетки крови, эпителия, слизистой ЖКТ, эпидермиса и др.). К стабильным относятся клетки таких органов как печень, поджелудочная железа, слюнные железы и др., которые обнаруживают ограниченную способность к делению. К статическим относятся клетки миокарда и нервной ткани, которые, как считает большинство исследователей, не делятся. Изучение физиологии клетки имеет важное значение для понимания онтогенетического уровня организации живого и механизмов саморегуляции клетки, обеспечивающих целостное функционирование всего организма. Наследственность и изменчивость являются фундаментальными свойствами живого, так как характерны для живых существ любого уровня организации. Наука, изучающая закономерности наследственности и изменчивости, называется генетикой. Генетика как наука изучает наследственность и наследственную изменчивость, а именно, она имеет дело со следующими проблемами: 1) хранение генетической информации; 2) передача генетической информации; 3) реализация генетической информации (использование ее в конкретных признаках развивающегося организма под влиянием внешней среды); 4) изменение генетической информации (типы и причины изменений, механизмы). Первый этап развития генетики – 1900-1912г. С 1900 г. – переоткрытие законов Г. Менделя учеными Х. Де Фризом, К. Корренсом, Э. Чермаком. Признание законов Г. Менделя. Второй этап 1912-1925г.г. – создание хромосомной теории Т. Моргана. Третий этап 1925-1940г.г. – открытие искусственного мутагенеза и генетических процессов эволюции. Четвертый этап 1940-1953г.г. – исследования по генному контролю физиологических и биохимических процессов. Пятый этап с 1953 и по настоящее время – развитие молекулярной биологии. Отдельные сведения по наследованию признаков были известны очень давно, однако научные основы передачи признаков впервые были изложены Г. Менделем в 1865 году в работе: "Опыты над растительными гибридами". Это были передовые мысли, но современники не придали значение его открытию. Понятия "ген" в то время еще не было и Г. Мендель говорил о "наследственных задатках", содержащихся в половых клетках, но их природа была неизвестна. В 1900 году независимо друг от друга Х. Де Фриз, Э. Чермак и К. Корренс заново открыли законы Г. Менделя. Этот год и считается годом рождения генетики как науки. В 1902 году Т. Бовери, Э. Вильсон и Д. Сеттон сделали предположение о связи наследственных факторов с хромосомами. В 1906 году У. Бетсон ввел термин "генетика", а в 1909 году В. Иогансен – "ген". В 1911 году Т. Морган и сотрудники сформулировали основные положения хромосомной теории наследственности. Они доказали, что гены расположены в определенных локусах хромосом в линейном порядке, поэтому геном стали считать участок хромосомы, ответственный за проявление определенного признака. Основные методы генетики: гибридологический, цитологический и математический. Генетика активно использует и методы других смежных наук: химии, биохимии, иммунологии, физики, микробиологии и др.
Дата добавления: 2014-01-06; Просмотров: 321; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |