Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расхождение теории теплоемкостей идеального газа с экспериментом

 

Формулы для теплоемкости (9.10) и (9.13) дают хорошее совпадение с экспериментом для одноатомных и многих двухатомных газов при комнатной температуре, например водорода, азота, кислорода и др. Для них теплоемкость оказывается весьма близкой к CV = 5/2R.

Однако у двухатомного газа хлора Cl2 теплоемкость равна примерно 6/2R, что невозможно объяснить (у двухатомной молекулы в принципе CV может быть равно либо 5/2R, либо 7/2R).

У трехатомных газов наблюдается систематические отклонения от предсказаний теории.

 
 

 


У жестких молекул трехатомных газов, если только молекулы не лежат на одной прямой, теплоемкость должна быть 6/2R. Эксперимент дает несколько большую величину, которую, однако, нельзя объяснить возбуждением какой-то дополнительной степени свободы. Эксперимент показал, что теплоемкость зависит от температуры, что находится в полном противоречии с формулами (9.10) и (9.13). Рассмотрим для примера более подробно теплоемкость молекулярного водорода. Молекула водорода двухатомна. Достаточно разреженный водородный газ очень близок к идеальному и является удобным объектом для проверки теории. Для двухатомного газа CV равно либо 5/2R, либо 7/2R, но от температуры теплоемкость не должна зависеть, однако в действительности теплоемкость молекулярного водорода зависит от температуры (рис.9.3): при низкой температуре (в области 50 К) его теплоемкость равна 3/2R, при комнатной — 5/2R, а при очень высокой температуре теплоемкость становится равной 7/2R. Таким образом, молекула водорода ведет себя при низкой температуре как точечная частица, у которой отсутствуют внутренние движения, при нормальной температуре — как жесткая гантель и наряду с поступательным движением также совершает вращательное движение, а при очень высокой температуре к этим движениям добавляются также колебательные движения атомов, входящих в молекулу. Дело происходит так как будто благодаря изменению температуры происходит включение (или выключение) различных степеней свободы: при малой температуре включены лишь поступательные, а затем и колебательные степени свободы.

Однако переход от одного режима движения к другому происходит не скачком при определенной температуре, а постепенно в некотором интервале температур. Это объясняется тем, что при определенной температуре возникает возможность для молекул переходить в другой режим движения. Но эта возможность не реализуется сразу всеми молекулами, а лишь их частью. По мере изменения температуры все большая доля молекул переходит в другой режим движения и поэтому кривая теплоемкости изменяется плавно в некотором интервале температур.

При достаточно малой температуре движение молекулы водорода между столкновениями подобно поступательному движению твердого тела.

Когда температура повышается, включаются вращательные степени свободы и картина движения молекулы несколько изменяется — молекула в процессе прямолинейного движения между столкновениями вращается.

При дальнейшем повышении температуры включаются колебательные степени свободы и движение молекулы еще более усложняется, поскольку в процессе поступательного движения составляющие ее атомы колеблются вдоль оси, изменяющей свою ориентацию в пространстве.

Объяснить зависимость теплоемкости от температуры классической теории не удалось. Количественную характеристику зависимости, обусловленной квантовыми закономерностями движения, можно дать лишь на основе решения уравнений движения квантовой механики.

 

 

<== предыдущая лекция | следующая лекция ==>
Молярная теплоемкость при постоянном давлении. Уравнение Майера | Применение первого начала термодинамики к изопроцессам
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1557; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.