КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ориентирование по географическому меридиану точки
Ориентирование линий Ориентировать линию - значит определить ее направление относительно другого направления, принятого за начальное. Направление определяется величиной ориентирного угла, то есть, угла между начальным направлением и направлением линии. В геодезии за начальное направление принимают:
Географическим азимутом называется угол, отсчитанный по ходу часовой стрелки от северного направления географического меридиана точки до направления линии; он обозначается буквой A (рис.1.11). Пределы изменения географического азимута от 0o до 360o. Рис.1.11 Рис.1.12 Азимут прямой линии в разных ее точках имеет разные значения, так как меридианы на поверхности сферы непараллельны между собой. Проведем линию BC и меридианы в точках B и C (рис.1.12). Азимут этой линии в точке C отличается от азимута линии в точке B на величину сближения меридианов точек B и C: (1.9) В геодезии различают прямое и обратное направление линии. Например, в точке C линии BD прямое направление - направление CD, обратное направление - направление CB. Прямой и обратный азимут линии в одной точке различаются ровно на 180o, однако, для разных точек линии это равенство не выполняется. Пусть BC - прямое направление линии в ее начале (в точке B), ABC - азимут прямого направления; CB - обратное направление линии в ее конце (в точке C), ACB - азимут обратного направления, тогда (1.10) то есть, обратный азимут линии равен прямому азимуту плюс-минус 180o, плюс сближение меридианов точек начала и конца линии. Различают восточное (положительное) и западное (отрицательное) сближение меридианов. Если конечная точка линии находится к востоку от начальной, то сближение меридианов будет восточным и положительным; если конечная точка линии лежит к западу от начальной, то сближение меридианов будет западным и отрицательным. Формула сближения меридиана. На сфере наметим две точки A и B, лежащие на одной параллели, то есть, имеющие одинаковую широту (рис.1.13). Рис.1.13 Проведем на поверхности сферы экватор и параллель точек A и B; в плоскости параллели проведем радиусы параллели FA = r и FB = r; угол между ними равен разности долгот точек. Через точки A и B проведем полуденные линии AN и BN, которые, пересекаясь на продолжении оси вращения Земли, образуют угол γ, являющийся сближением меридианов точек A и B. Требуется выразить Рис.1.13 угол γ через координаты точек A и B, то есть, через широту φ и долготы λA и λB, причем Δλ = λB - λA. Выразим длину дуги AB двумя способами: из ΔABN AB = BN * γ и из ΔABF AB = r * Δλ (углы γ и Δ λ выражены в радианах). Далее пишем: BN*γ=r* Δλ, (1.11) Радиус параллели выразим из Δ OFB r = R*Cos(φ), а отрезок BN - из ΔONB BN = R * Ctg(φ), где R - радиус сферы; тогда γ = Δ λ * Sin(φ) (1.13) В этой формуле размерность γ соответствует размерности λ. Гауссово сближение меридианов. Частным случаем сближения меридианов является гауссово сближение меридианов, когда начальная точка A лежит на осевом меридиане зоны. Величина гауссова сближения меридианов, равного сближению меридиана точки и осевого меридиана зоны, является одной из характеристик положения точки внутри зоны. Формула гауссова сближения меридианов имеет вид (1.14) Буквами L и B здесь обозначены геодезические долгота и широта точки, буквой L0 - долгота осевого меридиана зоны. В пределах зоны гауссово сближение меридианов не может превышать величины 3o*Sin(B).
Дата добавления: 2014-01-06; Просмотров: 678; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |