КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Масштабы топографических карт
Топографические карты и планы Понятие о барометрическом нивелировании Барометрическое нивелирование основано на зависимости атмосферного давления от высоты точки над уровнем моря. Известно, что с увеличением высоты на 10 м давление падает примерно на 1 мм ртутного столба. Приближенное значение превышения между точками 1 и 2 можно вычислить по формуле: h = H2 - H1 = ΔH * (P1 - P2), (4.70) где P1 и P2 - давление в первой и во второй точках; Более точные формулы барометрического нивелирования получают, учитывая закономерности распределения плотности и температуры воздуха по высоте. Приведем полную формулу Лапласа: h = K0*(1 + α *tm)*(1 + 0.378.em/Pm)* (1 + β*Cos2φfm)*(1 + 2/R*Hm) *lg(P1/P2). В этой формуле: Известны и так называемые сокращенные барометрические формулы, в которых значения некоторых параметров состояния атмосферы приняты фиксированными; так в формуле М.В. Певцова: h = N*(1 + α*tm) *lg(P1/P2), где N = 18470, принято: em = 9 мм рт.ст., fm = 55o, Hm = 250 м, Pm = 740 мм рт.ст. Точность барометрического нивелирования невысока; средняя квадратическая ошибка измерения превышения колеблется от 0.3 м в равнинных районах до 2 м и более в горных. Основные области применения барометрического нивелирования - геология и геофизика.
Масштабом называется степень уменьшения горизонтальных проложений линий местности при изображении их на плане, карте или аэроснимке. Различают численный и графические масштабы; к последним относятся линейный, поперечный и переходный масштабы. Численный масштаб. Численный масштаб выражается в виде дроби, числитель которой равен единице, а в знаменателе стоит число, показывающее степень уменьшения горизонтальных проложений. На топографических картах численный масштаб подписывается внизу листа карты в виде 1:М, например, 1:10000. Если длина линии на карте равна s, то горизонтальное проложение S линии местности будет равно: S = s * M. (5.1) В нашей стране приняты следующие масштабы топографических карт: 1:1 000 000, 1:500 000, 1:200 000, 1:100 000, 1:50 000, 1:25 000, 1:10 000. Этот ряд масштабов называется стандартным. Раньше этот ряд включал масштабы 1:300 000, 1:5000 и 1:2000. Линейный масштаб. Линейный масштаб - это графический масштаб; он строится в соответствии с численным масштабом карты в следующем порядке:
Рис.5.1 Линейный масштаб помещается внизу листа карты. Чтобы измерить длину линии на карте, фиксируют ее раствором циркуля-измерителя, затем правую иглу ставят на целое основание так, чтобы левая игла находилась внутри первого основания. Считывают с масштаба два отсчета: N1 - по правой игле и N2 - по левой; длина линии равна сумме отсчетов S = N1 + N2; сложение отсчетов выполняют в уме. Поперечный масштаб. Проведем прямую линию CD и отложим на ней несколько раз основание масштаба - отрезок a длиной 2 см (рис.5.2). В полученных точках восстановим перпендикуляры к линии CD; на крайних перпендикулярах отложим m раз вверх от линии CD отрезок постоянной длины и проведем линии, параллельные линии CD. Крайнее левое основание разделим на n равных частей. Соединим i-тую точку основания CA с (i-1)-й точкой линии BL; эти линии называются трансверсалями. Построенный таким образом масштаб называется поперечным. Рис.5.2 Если основание масштаба равно 2 см, то масштаб называется нормальным; если m = n = 10, то масштаб называется сотенным. Наименьшее деление поперечного масштаба равно отрезку F1L1; на такую длину отличаются два соседних параллельно расположенных отрезка при движении вверх по трансверсали и по вертикальной линии. Теория поперечного масштаба заключается в выводе формулы цены его наименьшего деления. Рассотрим два подобных треугольника AF1 L1 и AFL, из подобия которых следует: (5.2) откуда F1L1 = FL*(AL1 / AL). По построению FL = a/n и (AL1 / AL) = 1/m. Подставим эти равенства в формулу (5.2) и получим: (5.3) При m = n = 10 имеем F1L1 = a/100, то-есть, у сотенного масштаба цена наименьшего деления равна одной сотой доле основания. Порядок пользования поперечным масштабом:
Переходный масштаб. Иногда в практике приходится пользоваться картой или аэроснимком, масштаб которых не является стандартным, например, 1:17500, то-есть, 2 см на карте соответствуют 350 м на местности; наименьшее деление нормального поперечного сотенного масштаба будет при этом 3.5 м. Оцифровка такого масштаба неудобна для практических работ, поэтому поступают следующим образом. Основание поперечного масштаба берут не 2 см, а расчитывают так, чтобы оно соответствовало круглому числу метров, например, 400 м. Длина основания в этом случае будет a = 400 м / 175 м = 2.28 см. Если теперь построить поперечный масштаб с длиной основания a = 2.28 см, то одно деление левого основание будет соответствовать 40 м, а цена наименьшего деления будет равна 4 м. Поперечный масштаб с дробным основанием называется переходным. Точность масштаба. Карта или план - это графические документы. Принято считать, что точность графических построений оценивается величиной 0.1 мм. Длина горизонтального проложения линии местности, соответствующего на карте отрезку 0.1 мм, называется точностью масштаба. Практический смысл этого понятия заключается в том, что детали местности, имеющие размеры меньше точности масштаба, на карте в масштабе изобразить невозможно, и приходится применять так называемые внемасштабные условные знаки. Кроме понятия "точность масштаба" существует понятие "точность плана". Точность плана показывает, с какой ошибкой нанесены на план или карту точечные объекты или четкие контуры. Точность плана оценивается в большинстве случаев величиной 0.5 мм; в нее входят ошибки всех процессов создания плана или карты, в том числе и ошибки графических построений.
Дата добавления: 2014-01-06; Просмотров: 667; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |