КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Туннельный эффкт
Прохождение частицы сквозь потенциальный барьер. Рассмотрим потенциальный барьер простейшей прямоугольной формы (рис. 4, а) для одномерного (по оси х) движения частицы. Для потенциального барьера прямоугольной формы высоты U и ширины l можно записать . Рис. 4 При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером (при Е > U), либо отразится от него (при Е < U) и будет двигаться в обратную сторону, т. е. она не может проникнуть сквозь барьер. Для микрочастицы даже при Е > U имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При Е < U имеется также отличная от нуля вероятность, что частица окажется в области х >1, т. е. проникает сквозь барьер. Подобные, выводы следуют непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при условиях данной задачи. Уравнение Шредингера для стационарных состояний для каждой из выделенных на рис. 4, а области имеет вид (для областей 1 и 3 k2= 2mE / ħ2), (для области 2 q2= 2m (E – U) / ħ2). (1) Общие решения этих дифференциальных уравнений: Ψ1(x) = A1 ·e ikx + B1 ·e –ikx (для области 1); (2) Ψ2(x) = A2 ·e iqx + B2 ·e – iqx (для области 2); Ψ3(x) = A3 ·e ikx + B3 ·e –ikx (для области 3); (3) В выражении (2) первый член представляет собой плоскую волну, распространяющуюся в положительном направлении оси х (соответствует частице, движущейся в сторону барьера), а второй – волну, распространяющуюся в противоположном направлении, т. е. отраженную от барьера (соответствует частице, движущейся от барьера налево). Решение (3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент В3 в формуле (3) следует принять рапным нулю. В области 2 решение зависит от соотношений E > U или E<U. Физический интерес представляет случай, когда полная энергия частицы меньше высоты потенциального барьера, поскольку при Е<U законы классической физики однозначно не разрешают частице проникнуть сквозь барьер. В данном случае, согласно (1), q =iβ – мнимое число, где . Учитывая значение q и В 3 = 0 получим решения уравнения Шредингера для трех областей в следующем виде: Ψ1(x) = A 1e ikx + B 1e – ikx (для области 1) Ψ2(x) = A2e - βx + B 2e βx (для области 2) (221.5) Ψ3 (x) = A 3 e ikx (для области 3) В области 2 функция уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени экспонент не мнимые, а действительные. Качественный вид функций Ψ1(х), Ψ2(х) и Ψ3(x) показан на рис. 4, б. Из рисунка следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, получили, что частица имеет отличную от нуля вероятность прохождения сквозь потенциальный барьер конечной ширины. Таким образом, квантовая механика приводит к принципиально новому специфическому квантовому явлению, получившему название туннельного эффекта, в результате которого микрообъект может «пройти» сквозь потенциальный барьер. Для описания туннельного эффекта используют понятие коэффициента прозрачности D потенциального барьера, определяемого как отношение плотности потока прошедших частиц к плотности потока падающих . Для того чтобы найти отношение | А 3 /А 1|2, необходимо воспользоваться условиями непрерывности Ψ и Ψ´ на границах барьера х = 0 и x = l (рис.4): (6) Эти четыре условия дают возможность выразить коэффициенты A 2, A 3, В 1 и B 2 через А 1. Совместное решение уравнений (6) для прямоугольного потенциального барьера дает (в предположении, что коэффициент прозрачности мал по сравнению с единицей) , (7) где U – высота потенциального барьера, Е – энергия частицы, l – ширина барьера, D 0 – постоянный множитель, который можно приравнять единице. Из выражепия (7) следует, что D сильно зависит от массы т частицы, ширины l барьера и от (U – E); чем шире барьер, тем меньше вероятность прохождения сквозь него частицы. Для потенциального барьера произвольной формы (рис.5) имеем , где U =U (x). C классической точки зрения прохождение частицы сквозь потенциальный барьер при E < U невозможно, так как частица. находясь в области барьера, должна была бы обладать отрицательной кинетической анергией. Туннельный эффект является специфическим квантовым эффектом. Прохождение частицы сквозь область, в которую, согласно законам классической механики, она не может проникнуть, можно пояснить соотношением неопределенностей. Неопределенность импульса Δ р на отрезке Δ х = l составляет Δ р > h / l. Связанная с этим разбросом в значениях импульса кинетическая энергия (Δ р)2 / (2 т) может оказаться достаточной для того, чтобы полная энергия частицы оказалась больше потенциальной. Рис. 5 Основы теории туннельных переходов заложены работами Л. И. Мандельштама и М. Л. Леонтовича (1903 – 1981). Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например, явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например, α-распад, протекание термоядерных реакций).
Дата добавления: 2014-01-06; Просмотров: 295; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |