КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Энергетика экосистем
Организация (структура) экосистем Рассмотренные выше взаимосвязи организмов и другие вопросы организации живого вещества позволяют дать более полное определение экосистемы. Это единый природный или природно-антропогенный комплекс, который выступает как функциональное целое и образован живыми организмами и средой обитания. Для того чтобы экосистема функционировала (существовала) неограниченно долго, она должна обладать свойствами связывания и высвобождения энергии, а также круговоротом веществ. Экосистема, кроме этого, должна иметь механизмы, позволяющие противостоять внешним воздействиям (возмущениям, помехам), гасить их. Для раскрытия этих механизмов познакомимся с различными видами структур и другими характеристиками (свойствами) экосистем. Блоковая модель экосистемы. Любая экосистема состоит из двух блоков. Один из них представлен комплексом взаимосвязанных живых организмов - биоценозом, а второй - факторами среды - биотопом или экотопом. В таком случае можно записать: экосистема = биоценоз + биотоп (экотоп). В. Н. Сукачев блоковую модель в ранге биогеоценоза представлял следующей схемой (рис. 6). Рис. 6 позволяет вернуться к рассмотрению отличий, характерных для понятий "экосистема" и "биогеоценоз. Биогеоценоз, в соответствии с определением автора термина - В. Н. Сукачева -включает все представленные на рисунке блоки и их звенья. Он не мыслим без основного звена - фитоценоза, или растительного сообщества. В то же время экосистема может быть и без растительного сообщества, а также и почв (например, труп животного, ствол дерева в стадиях разложения и населенности различными организмами). С этим связан и временной фактор существования характеризуемых систем. Биогеоценоз во всехслучаях потенциально бессмертен, поскольку он все время пополняется энергией за счет растительных (фото- или хемосинтезирующих) организмов. Существование экосистемы без растений заканчивается одновременно с высвобождением в процессе круговорота веществ всей накопленной энергии. Еще раз напомним, что любой биогеоценоз может быть назван экосистемой, в то время как не каждая экосистема может быть названа биогеоценозом, если руководствоваться тем содержанием, которое вкладывал в понятие "биогеоценоз" его автор — В. Н. Сукачев. Надо вместе с тем иметь в виду, что в настоящее время термины "экосистема" и "биогеоценоз" нередко рассматриваются как синонимы. Видовая структура экосистем. Под видовой структурой понимается количество видов, образующих экосистему и соотношение их численностей. Точных данных о числе видов, образующих экосистемы, нет. Это связано с тем, что трудно учесть видовое разнообразие, свойственное мелким организмам (особенно микроорганизмам). Но в целом оно исчисляется сотнями и десятками сотен. Видовое разнообразие обычно тем значительнее, чем богаче условия (биотоп), характерные для экосистемы. В этом отношении самыми богатыми по видовому разнообразию являются, например, экосистемы дождевых тропических лесов. Только число видов растений исчисляется в них сотнями.
Рис. 6. Схема биогеоценоза (экосистемы) по В. Н. Сукачеву
Богатство видов зависит также от возраста экосистем. Молодые экосистемы, возникающие, например, на таком изна
чально безжизненном субстрате, как отвалы пород, извлекаемых из глубинных слоев земной коры при добыче полезных ископаемых, крайне бедны видами. В дальнейшем по мере развития экосистем их видовое богатство увеличивается. Но в хорошо сформировавшихся экосистемах оно может несколько уменьшаться. К этому времени обычно выделяется один или 2—3 вида, которые явно преобладают по численности особей. Например, в еловом лесу — ель, в смешанном — ель, береза и осина, в степи — ковыль и типчак. Эти виды занимают большую часть пространства, оставляя меньше места для других видов. Виды, явно преобладающие по численности особей, носят название доминант (лат. доминантис — господствующий). Наряду с доминантами в экосистемах выделяются виды- эдификаторы (лат. эдификатор — строитель). К ним относят те виды, которые являются основными образователями среды. Обычно вид-доминант одновременно является и эдификатором. Например, ель в еловом лесу наряду с доминантностью обладает высокими эдификаторными свойствами. Они выражаются в ее способности сильно затенять почву, создавать кислую среду своими корневыми выделениями и при разложении мертвого органического вещества образовывать специфические для кислой среды подзолистые почвы. Вследствие высоких эдификаторных свойств ели под ее пологом могут жить только виды растений, которые способны мириться со скудным освещением (теневыносливые и тенелюбивые). В то же время под пологом елового леса доминантой может быть, например, черника, но она не является существенным эдификатором. Видовое разнообразие — очень важное свойство экосистем. С ним, как отмечалось выше, связана устойчивость систем к неблагоприятным факторам среды. Разнообразие обеспечивает как бы подстраховку, дублирование устойчивости. Вид, который присутствует в числе единичных экземпляров, при неблагоприятных условиях для широко представленного вида, в том числе и доминантного, может резко увеличить свою численность и таким образом заполнить освободившееся пространство (экологическую нишу), сохранив экосистему как единое целое, хотя и с несколько иными свойствами. Трофическая структура экосистем. Цепи питания. Любая экосистема включает несколько трофических (пищевых) уровней, или звеньев. Первый уровень представлен растениями. Их называют автотрофами (греч. аутос — сам; трофо — пища) или продуцентами (лат. продуцена — создающий). Второй уровень представлен животными организмами. Их называют гетеротро-фами (греч. геторос — другой), фитофагами (греч. фитон — растение, фагос — пожирающий) или коисументами первого порядка. Третий уровень (иногда четвертый, пятый) представлен хищниками (зоофагами) или консументами второго (третьего, четвертого) порядка. Последний уровень в основном представлен организмами и грибами, питающимися мертвым веществом. Их называют сапрофагами (греч. сапрос — гнилой) или редуцентами (лат. редуцере — возвращать). Взаимосвязанный ряд трофических уровней представляет цепь питания, или трофическую цепь (рис. 7). Главное свойство цепи питания — осуществление биологического круговорота веществ и высвобождение
Рис.7.Функциональная структура экосистемы (цепь питания) и круговорот вещества в ней
запасенной в органическом веществе энергии. Важно подчеркнуть, что цепь питания не всегда может быть полной. В ней могут отсутствовать растения (продуценты). Такая цепь питания характерна, как отмечалось выше, для сообществ, формирующихся на базе разложения трупов животных или растительных остатков, например, накапливающихся в лесах на почве (лесной подстилки). В цепи питания очень часто отсутствуют или представлены небольшим количеством животные (гетеротрофы). Например, в лесах отмирающие растения или их части (ветви, листья и др.) сразу включаются в звено редуцентов, которые разлагают органическое вещество до исходных минеральных веществ и углекислоты, завершая круговорот. Исходя из положения: разнообразие — синоним устойчивости, можно заключить, что экосистемы с более длинными цепями питания характеризуются повышенной надежностью и более интенсивным круговоротом веществ. Живые организмы, входящие в экосистемы, для своего существования должны постоянно пополнять и расходовать энергию. Растения, как известно, способны запасать энергию в химических связях в процессе фотосинтеза или хемосинтеза. При фотосинтезе связывается только энергия с определенными длинами волн — 380—710 нм. Эту энергию называют фотосинтетически активной радиацией (ФАР). Она по длинам волн близка к видимой части спектра. На эту радиацию обычно приходится около 40% общей солнечной радиации, достигающей земной поверхности. Остальная часть спектра относится либо к более короткой (ультрафиолетовой), либо к более длинной (инфракрасной) радиации. С последней обычно связан тепловой эффект. Растения в процессе фотосинтеза связывают лишь небольшую часть солнечной радиации. Даже по отношению к фотосинтетически активной — это в среднем для Земного шара менее 1%. Только наиболее продуктивные экосистемы, такие, как плантации сахарного тростника, тропические леса, посевы кукурузы в оптимальных» условиях могут связывать до 3—5% ФАР. В опытах с кондиционированными условиями по всем факторам среды за короткие периоды времени удавалось достичь эффективности фотосинтеза по усвоению солнечной энергии порядка 8—10% ФАР. Растения являются первичными поставщиками энергии для всех других организмов в цепях питания. Существуют определенные закономерности перехода энергии с одного трофического уровня на другой вместе с потребляемой пищей. Основная часть энергии, усвоенной консументом с пищей, расходуется на его жизнеобеспечение (движение, поддержание температуры тела и т.п.). Эту часть энергии рассматривают как траты на дыхание, с которым в конечном счете связаны все возможности ее высвобождения из химических связей органического вещества. Часть энергии переходит в тело организма потребителя, увеличивая его массу. Некоторая доля пищи не усваивается организмом, а следовательно, из нее не высвобождается и энергия. В последующем она высвобождается из экскрементов, но другими организмами, которые потребляют их в пищу. Количество энергии, расходуемой организмами на различные цели, неоднозначно. В периоды интенсивной жизнедеятельности взрослого организма в теле его может совершенно не фиксироваться энергия. Наоборот, траты ее в ряде случаев превышают поступление (организм теряет вес). В то же время в периоды интенсивного роста организмов, особенно в периоды размножения (беременности), в теле фиксируется значительное количество энергии. Выделение энергии с экскрементами у плотоядных животных (например, хищников) невелико, у травоядных оно более значительно, а гусеницы некоторых насекомых, питающиеся растениями, выделяют с экскрементами до 70% энергии. Однако при всем разнообразии расходов энергии в среднем максимальны траты на дыхание, которые в сумме с неусвоенной пищей составляют около 90% от потребленной. Поэтому переход энергии с одного трофического уровня на другой в среднем принимается близким к 10% от энергии, потребленной с пищей. Эта закономерность рассматривается обычно как "правило десяти процентов". Данное правило надо оценивать как относительное, ориентировочное. Вместе с тем из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4—5. Пройдя через них, практически вся энергия оказывается рассеянной. Закономерности потока и рассеивания энергии имеют важные в практическом отношении следствия. Во-первых, с энергетической точки зрения крайне нецелесообразно потребление животной продукции, особенно с высоких уровней цепей питания. Образование этой продукции связано с большими потерями (рассеиванием) энергии. Особенно велики потери энергии при переходе с первого трофического уровня на второй, от растений к травоядным животным. Часто в экологической литературе рассматривается в качестве примера цепь питания: люцерна — телята — мальчик. Показано, что если бы мальчик весом 48 кг питался только телятиной, то за год ему потребовалось бы для обеспечения жизнедеятельности 4,5 теленка, для питания которых, в свою очередь, необходим урожай люцерны с площади 4 га весом 8211 кг. Такова энергетическая цена животной пищи. Во-вторых, чтобы сократить вероятность дефицита продуктов питания для интенсивно возрастающей численности населения (по закономерности близкой к экспоненте), надо, чтобы в рационе людей больший удельный вес занимала растительная пища. Энергетически идеально — вегетарианство. В-третьих, для увеличения КПД использования пищи при получении животноводческой продукции в условиях культурного хозяйства очень важно уменьшить основную статью нерационального расходования энергии — ее траты на дыхание. Это возможно за счет поддержания оптимального температурного режима в животноводческих помещениях, ограничения подвижности животных и, естественно, сбалансированности кормового рациона по различным элементам питания, а также применения различных биотехнических приемов (умеренные добавки стимуляторов роста, веществ, способствующих улучшению аппетита и т.п.). Споры о допустимо возможной численности населения с точки зрения обеспечения питанием в значительной мере относительны, если они не учитывают, какой в среднем удельный вес в рационе отводится животной и растительной пище. Если исходить из рациона питания зажиточной части населения, потребляющей мяса 80—100 кг в год на одного человека, то явно невозможно обеспечение таким рационом современной численности населения Земли (около 5,5 млрд. человек). Если же исходить из необходимости обеспечения минимальных потребностей жизнедеятельности организма и при настоящем производстве продуктов питания, возможно исключить голод и, кроме того, прокормить на 2—3 миллиарда населения больше современного. Для этого требует решения вопрос более сбалансированного распределения продуктов питания. Переход на вегетарианство и тем более расширения ассортимента растений, используемых в пищу, может обеспечить жизнедеятельность (с энергетической точки зрения) количеству населения в 2—3 раза больше современной численности. Ясно, однако, что при этом останутся нерешенными многие медико-биологические проблемы здоровья и долголетия, а также допустимые пределы антропогенных нагрузок на экосистемы и биосферу в целом.
Дата добавления: 2014-01-06; Просмотров: 1475; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |