Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Деление интегральных схем на категории. Их производство и назначение




Предмет цифровой схемотехники

Предметом цифровой схемотехники как научно-технической дисциплины считается исследования и разработка элементов и узлов (устройств) цифровых систем. Своеобразие атрибутов и принципов микропроцессорной технике требует ее выделения в самостоятельную дисциплину. Остается схемотехника как таковая. Она вбирает в себя элементы точных знаний и прикладного искусства. Говоря о ее детерминированных основах имеется в виду не только технологический базис, понятия и принципы, но и физико-теоретические основы: процессы в цифровых схемах, методы их анализа и синтеза. Дисциплину "Цифровая схемотехника" следует рассматривать как продолжение курса «Аналоговая схемотехника», «Теория электронных и электрических цепей», которые студенты должны освоить предварительно, так как требуются знания элементной базы аналоговых электронных устройств.

Большинство современных систем автоматики, вычислительные системы, системы передачи и обработки информации выполняются на устройствах цифровой техники либо полностью, либо частично. Поэтому знание принципов применения цифровых устройств и построения на их основе систем различного назначения имеет актуальное значение и большую практическую ценность как в инженерной деятельности, так и при исследованиях методологического характера. Связь цифровой схемотехники с импульсной техникой историко-фундаментальна, о чем нередко забывают в последнее время. Понимание импульсных процессов в линейных цепях и полупроводниковых переключателях является основой схемотехнического образования. Без этого трудно выяснить физические особенности передачи сигналов по линиям связи цифровых устройств, причины возникновения задержек в элементах, влияние нагрузки на их быстродействие и т.д.

 

 

Элементную базу цифровых устройств (ЦУ) составляют интегральные схемы (ИС). Со временем их изобретения (США 1959 г.) ИС постоянно совершенствуются и усложняются. Характеристикой сложности ИС является уровень интеграции, оцениваемый либо числом базовых логических элементов, либо числом транзисторов, которые могут быть реализованы на кристелле.

Различия в уровне интеграции делят ИС на несколько категорий: МИС, СИС, БИС, СБИС (соответственно малые, средние, большие, и сверхбольшие ИС). Практическое использование находят все категории.

МИС реализуют простейшие логические преобразование и обладают универсальностью – даже с помощью одного типа логического элемента (например, И-НЕ) можно построить любое ЦУ. В виде СИС выпускаются в готовом виде таких схемы, как малоразрядные регистры, счетчики, дешифраторы, сумматоры и. т. п. Номенклатура СИС должна быть более широкой и разнообразной, так как их универсальность снижается. В развитых сериях стандартных,ИС насчитываются сотни типов СИС.

С появлением БИС и СБИС схемы с тысячами и даже миллионами логических элементов стали размещаться на одном кристалле. При этом проблема снижения универсальности для ИС с жесткой структурой обострилась бы чрезвычайно – пришлось бы производить огромное число типов ИС при снижении объема производства каждого из типов, что непомерно увеличило бы их стоимость, так как высокие затраты на проектирование БИС/СБИС относились бы к небольшому объему их выпуска.

Выход из возникшего противоречия был найден на пути переноса специализации микросхем в область программирования. Появились микропроцессоры и БИС/СБИС с программируемой структурой.

Микропроцессор способен выполнять команды, входящие в его систему команд. Меняя последовательность команд (программу), можно решать различные задачи на одном и том же микропроцессоре. Иначе говоря, в этом случае структура аппаратных средств не связана с характером решаемой задачи. Это обеспечивает микропроцессорам массовое производство с соответствующим снижением стоимости.

В виде БИС/СБИС с программируемой структурой потребителю предлагается кристалл, содержащий множество логических блоков, межсоединения для которых назначает сам системотехник. Промышленность получает возможность производить кристаллы массовым тиражом, не адресуясь к отдельным потребителям. Системотехник сам программирует структуру ИС соответственно своему проекту. Разработан целый спектр методов программирования связей между блоками и элементами кристалла.

Два указанных метода имеют большие различия. Микропроцессоры реализуют последовательную обработку информации, выполняя большое число отдельных действий, соответствующих командам, что может не обеспечить требуемого быстродействия. В БИС/СБИС с программируемой структурой обработка информации происходит без разбиения этого процесса на последовательно выполняемые элементарные действия. Задача решается «целиком», ее характер определяет структуру устройства. Преобразование данных происходит одновременно во многих частях устройства. Сложность устройства зависит от сложности отдельно решаемой задачи, чего нет в микропроцессорных системах, где сложность задачи влияет лишь на программу а не на аппаратные средства ее выполнения.

Таким образом БИС/СБИС с программируемой структурой могут быстрее решать задачи, сложность которых ограничена уровнем интеграции микросхем, а микропроцессорные средства- задачи неограниченной сложности, но с меньшим быстродействием. Оба направления открывают ценные перспективы дальнейшего улучшения технико-экономических показателей создаваемой на них аппаратуры.

С ростом уровня интеграции ИС в проектировании на их основе все больше и больше усиливается аспект который можно назвать интерфейсным проектированием. Задачей разработки становится составление блоков из субблоков стандартного вида путем правильного их соединения. Успешное проектирование требует хорошего знания номенклатуры и параметров элементов, узлов и устройств цифровой аппаратуры и привлечения систем автоматизированного проектирования (САПР) для создания сложных систем.

ИС широкого применения изготовляются по схемотехнологиям КМОП, ТТЛШ и др. Элементы КМОП обладают рядом уникальных параметров (малая потребляемая мощность при невысоких частотах переключения, высокая помехоустойчивость, широкие допуски на величину питающих напряжений, высокое быстродействие при небольших емкостных нагрузках). Эти элементы доминируют в схемах внутренних областей БИС/СБИС. За ТТЛШ осталась в основном область периферийных схем, где требуется передача сигналов по внешним цепям, испытывающим значительную емкостную нагрузку. Элементы ЭСЛ (эмиттерно-связанная логика) обеспечивают максимальное быстродействие, но ценой повышения потребляемой мощности, что снижает достижимый уровень интеграции.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 543; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.