Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Серии цифровых микросхем




Основные обозначения на схемах

Функции цифровых устройств.

Двоичное кодирование.

Корпуса цифровых микросхем.

Серии цифровых микросхем.

Основные обозначения на схемах.

План

Микросхемы и их функционирование

Лекция № 3

Микросхемы и их функционирование

Лекция № 3

презинтацию подготовил

студент группы 4ФБЕ

Быковський Никита


В лекции рассматриваются обозначения цифровых микросхем, их выводов и сигналов на принципиальных схемах, особенности основных серий простейших цифровых микросхем, базовые типы корпусов микросхем, а также принципы двоичного кодирования и принципы работы цифровых устройств.

Для изображения электронных устройств и их узлов применяется три основных типа схем:

· принципиальная схема;

· структурная схема;

· функциональная схема.

Различаются они своим назначением и, самое главное, степенью детализации изображения устройств.

Принципиальная схема — наиболее подробная. Она обязательно показывает все использованные в устройстве элементы и все связи между ними. Если схема строится на основе микросхем, то должны быть показаны номера выводов всех входов и выходов этих микросхем. Принципиальная схема должна позволять полностью воспроизвести устройство. Обозначения принципиальной схемы наиболее жестко стандартизованы, отклонения от стандартов не рекомендуются.

Структурная схема — наименее подробная. Она предназначена для отображения общей структуры устройства, то есть его основных блоков, узлов, частей и главных связей между ними. Из структурной схемы должно быть понятно, зачем нужно данное устройство и что оно делает в основных режимах работы, как взаимодействуют его части. Обозначения структурной схемы могут быть довольно произвольными, хотя некоторые общепринятые правила все-таки лучше выполнять.

Функциональная схема представляет собой гибрид структурной и принципиальной. Некоторые наиболее простые блоки, узлы, части устройства отображаются на ней, как на структурной схеме, а остальные — как на принципиальной схеме. Функциональная схема дает возможность понять всю логику работы устройства, все его отличия от других подобных устройств, но не позволяет без дополнительной самостоятельной работы воспроизвести это устройство. Что касается обозначений, используемых на функциональных схемах, то в части, показанной как структура, они не стандартизованы, а в части, показанной как принципиальная схема, — стандартизованы.

В технической документации обязательно приводятся структурная или функциональная схема, а также обязательно принципиальная схема. В научных статьях и книгах чаще всего ограничиваются структурной или функциональной схемой, приводя принципиальные схемы только некоторых узлов.

А теперь рассмотрим основные обозначения, используемые на схемах.

Все узлы, блоки, части, элементы, микросхемы показываются в виде прямоугольников с соответствующими надписями. Все связи между ними, все передаваемые сигналы изображаются в виде линий, соединяющих эти прямоугольники. Входы и входы/выходы должны быть расположены на левой стороне прямоугольника, выходы — на правой стороне, хотя это правило часто нарушают, когда необходимо упростить рисунок схемы. Выводы и связи питания, как правило, не прорисовывают, если, конечно, не используются нестандартные включения элементов схемы. Это самые общие правила, касающиеся любых схем.

Прежде чем перейти к более частным правилам, дадим несколько определений.

Положительный сигнал (сигнал положительной полярности) — это сигнал, активный уровень которого — логическая единица. То есть нуль — это отсутствие сигнала, единица — сигнал пришел (рис. 2.1).

 

Рис. 3.1. Элементы цифрового сигнала

 

Отрицательный сигнал (сигнал отрицательной полярности) — это сигнал, активный уровень которого — логический нуль. То есть единица — это отсутствие сигнала, нуль — сигнал пришел (рис. 3.1).

Активный уровень сигнала — это уровень, соответствующий приходу сигнала, то есть выполнению этим сигналом соответствующей ему функции.

Пассивный уровень сигнала — это уровень, в котором сигнал не выполняет никакой функции.

Инвертирование или инверсия сигнала — это изменение его полярности.

Инверсный выход — это выход, выдающий сигнал инверсной полярности по сравнению с входным сигналом.

Прямой выход — это выход, выдающий сигнал такой же полярности, какую имеет входной сигнал.

Положительный фронт сигнала — это переход сигнала из нуля в единицу.

Отрицательный фронт сигнала (спад) — переход сигнала из единицы в нуль.

Передний фронт сигнала — это переход сигнала из пассивного уровня в активный.

Задний фронт сигнала — это переход сигнала из активного уровня в пассивный.

Тактовый сигнал (или строб) — управляющий сигнал, который определяет момент выполнения элементом или узлом его функции.

Шина — группа сигналов, объединенных по какому-то принципу, например, шиной называют сигналы, соответствующие всем разрядам какого-то двоичного кода.

 

Рис. 3.2. Обозначение входов и выходов

 

Для обозначения полярности сигнала на схемах используется простое правило: если сигнал отрицательный, то перед его названием ставится знак минус, например, -WR или -OE, или же (реже) над названием сигнала ставится черта. Если таких знаков нет, то сигнал считается положительным. Для названий сигналов обычно используются латинские буквы, представляющие собой сокращения английских слов, например, WR — сигнал записи (от "write" — "писать").

Инверсия сигнала обозначается кружочком на месте входа или выхода. Существуют инверсные входы и инверсные выходы (рис. 2.2).

Если какая-то микросхема выполняет функцию по фронту входного сигнала, то на месте входа ставится косая черта (под углом 45°), причем наклон вправо или влево определяется тем, положительный или отрицательный фронт используется в данном случае (рис. 2.2).

Тип выхода микросхемы помечается специальным значком: выход 3С — перечеркнутым ромбом, а выход ОК — подчеркнутым ромбом (рис. 2.2). Стандартный выход (2С) никак не помечается.

Наконец, если у микросхемы необходимо показать неинформационные выводы, то есть выводы, не являющиеся ни логическими входами, ни логическими выходами, то такой вывод помечается косым крестом (две перпендикулярные линии под углом 45°). Это могут быть, например, выводы для подключения внешних элементов (резисторов, конденсаторов) или выводы питания (рис. 3.3).

 

Рис. 3.3. Обозначение неинформационных выводов

 

В схемах также предусматриваются специальные обозначения для шин (рис. 3.4). На структурных и функциональных схемах шины обозначаются толстыми линиями или двойными стрелками, причем количество сигналов, входящих в шину, указывается рядом с косой чертой, пересекающей шину. На принципиальных схемах шина тоже обозначается толстой линией, а входящие в шину и выходящие из шины сигналы изображаются в виде перпендикулярных к шине тонких линий с указанием их номера или названия (рис. 3.4). При передаче по шине двоичного кода нумерация начинается с младшего разряда кода.

 

Рис. 3.4. Обозначение шин

 

При изображении микросхем используются сокращенные названия входных и выходных сигналов, отражающие их функцию. Эти названия располагаются на рисунке рядом с соответствующим выводом. Также на изображении микросхем указывается выполняемая ими функция (обычно в центре вверху). Изображение микросхемы иногда делят на три вертикальные поля. Левое поле относится к входным сигналам, правое — к выходным сигналам. В центральном поле помещается название микросхемы и символы ее особенностей. Неинформационные выводы могут указываться как на левом, так и на правом поле; иногда их показывают на верхней или нижней стороне прямоугольника, изображающего микросхему.

В табл. 2.1 приведены некоторые наиболее часто встречающиеся обозначения сигналов и функций микросхем. Микросхема в целом обозначается на схемах буквами DD (от английского "digital" — "цифровой") с соответствующим номером, например, DD1, DD20.1, DD38.2 (после точки указывается номер элемента или узла внутри микросхемы).

 

 

Таблица 3.1. Некоторые обозначения сигналов и микросхем
Обозначение Название Назначение
& And Элемент И
=1 Exclusive Or Элемент Исключающее ИЛИ
  Or Элемент ИЛИ
А Address Адресные разряды
BF Buffer Буфер
C Clock Тактовый сигнал (строб)
CE Clock Enable Разрешение тактового сигнала
CT Counter Счетчик
CS Chip Select Выбор микросхемы
D Data Разряды данных, данные
DC Decoder Дешифратор
EZ Enable Z-state Разрешение третьего состояния
G Generator Генератор
I Input Вход
I/O Input/Output Вход/Выход
OE Output Enable Разрешение выхода
MS Multiplexer Мультиплексор
Q Quit Выход
R Reset Сброс (установка в нуль)
RG Register Регистр
S Set Установка в единицу
SUM Summator Сумматор
T Trigger Тригер
TC Terminal Count Окончание счета
Z Z-state Третье состояние выхода

 

 

В настоящее время выпускается огромное количество разнообразных цифровых микросхем: от простейших логических элементов до сложнейших процессоров, микроконтроллеров и специализированных БИС (Больших Интегральных Микросхем). Производством цифровых микросхем занимается множество фирм — как у нас в стране, так и за рубежом. Поэтому даже классификация этих микросхем представляет собой довольно трудную задачу.

Однако в качестве базиса в цифровой схемотехнике принято рассматривать классический набор микросхем малой и средней степени интеграции, в основе которого лежат ТТЛ серии семейства 74, выпускаемые уже несколько десятилетий рядом фирм, например, американской фирмой Texas Instruments (TII). Эти серии включают в себя функционально полный комплект микросхем, используя который, можно создавать самые разные цифровые устройства. Даже при компьютерном проектировании современных сложных микросхем с программируемой логикой (ПЛИС) применяются модели простейших микросхем этих серий семейства 74. При этом разработчик рисует на экране компьютера схему в привычном для него элементном базисе, а затем программа создает прошивку ПЛИС, выполняющую требуемую функцию.

 

Рис. 3.5. Система обозначений фирмы Texas Instruments

 

Каждая микросхема серий семейства 74 имеет свое обозначение, и система обозначений отечественных серий существенно отличается от принятой за рубежом.

В качестве примера рассмотрим систему обозначений фирмы Texas Instruments (рис. 2.5). Полное обозначение состоит из шести элементов:

1. Идентификатор фирмы SN (для серий AC и ACT отсутствует).

2. Температурный диапазон (тип семейства):

o 74 — коммерческие микросхемы (температура окружающей среды для биполярных микросхем — 0...70°С, для КМОП микросхем — – 40...+85°С),

o 54 — микросхемы военного назначения (температура — –55...+125°С).

3. Код серии (до трех символов):

o Отсутствует — стандартная ТТЛ–серия.

o LS (Low Power Schottky) — маломощная серия ТТЛШ.

o S (Schottky) — серия ТТЛШ.

o ALS (Advanced Schottky) — улучшенная серия ТТЛШ.

o F (FAST) — быстрая серия.

o HC (High Speed CMOS) — высокоскоростная КМОП–серия.

o HCT (High Speed CMOS with TTL inputs) — серия HC, совместимая по входу с ТТЛ.

o AC (Advanced CMOS) — улучшенная серия КМОП.

o ACT (Advanced CMOS with TTL inputs) — серия AC, совместимая по входу с ТТЛ.

o BCT (BiCMOS Technology) — серия с БиКМОП–технологией.

o ABT (Advanced BiCMOS Technology) — улучшенная серия с БиКМОП–технологией.

o LVT (Low Voltage Technology) — серия с низким напряжением питания.

4. Идентификатор специального типа (2 символа) — может отсутствовать.

5. Тип микросхемы (от двух до шести цифр). Перечень некоторых типов микросхем приведен в приложении.

6. Код типа корпуса (от одного до двух символов) — может отсутствовать. Например, N — пластмассовый корпус DIL (DIP), J — керамический DIL (DIC), T — плоский металлический.

Примеры обозначений: SN74ALS373, SN74ACT7801, SN7400.

 

Рис. 3.6. Обозначения отечественных микросхем

 

Отечественная система обозначений микросхем отличается от рассмотренной довольно существенно (рис. 2.6). Основные элементы обозначения следующие:

1. Буква К обозначает микросхемы широкого применения, для микросхем военного назначения буква отсутствует.

2. Тип корпуса микросхемы (один символ) — может отсутствовать. Например, Р — пластмассовый корпус, М — керамический, Б — бескорпусная микросхема.

3. Номер серии микросхем (от трех до четырех цифр).

4. Функция микросхемы (две буквы).

5. Номер микросхемы (от одной до трех цифр). Таблица функций и номеров микросхем, а также таблица их соответствия зарубежным аналогам приведены в приложении.

Например, КР1533ЛА3, КР531ИЕ17, КР1554ИР47.

Главное достоинство отечественной системы обозначений состоит в том, что по обозначению микросхемы можно легко понять ее функцию. Зато в системе обозначений Texas Instruments виден тип серии с его особенностями.

Чем отличается одна серия от другой?

 

Таблица 3.2. Сравнение параметров одинаковых микросхем в разных стандартных сериях
  К155ЛА3(SN7400N) К555ЛА3(SN74LS00N) КР1533ЛА3(SN74ALS00N) КР1554ЛА3(SN74AC00N)
tPLH, нс не более       8,5
tPHL, нс не более       7,0
IIL, мА не более -1,6 -0,45 -0,1 -0,001
IIH, мА не более 0,04 0,02 0,02 0,001
IOL, мА не менее        
IOH, мА не менее -0,4 -0,4 -0,4 -75
UOL, В не более 0,4 0,5 0,5 0,3
UOH, В не менее 2,4 2,7 2,5 4,4
ICC, мА не более   4,4   0,04

 

На первом уровне представления (логическая модель) серии не различаются ничем. То есть одинаковые микросхемы разных серий работают по одним и тем же таблицам истинности, по одним и тем же алгоритмам. Правда, надо учитывать, что некоторые микросхемы имеются только в одной из серий, а некоторых нет в нескольких сериях.

На втором уровне представления (модель с учетом задержек) серии отличаются величиной задержки распространения сигнала. Это различие может быть довольно существенным. Поэтому в тех схемах, где величина задержки принципиальна, надо использовать микросхемы более быстрых серий (табл. 3.2).

На третьем уровне представления (электрическая модель) серии различаются величинами входных и выходных токов и напряжений, а также, что не менее важно, токами потребления (табл. 3.2). Поэтому в тех устройствах, где эти параметры принципиальны, надо применять микросхемы, обеспечивающие, к примеру, низкие входные токи, высокие выходные токи и малое потребление.

Серия К155 (SN74) — это наиболее старая серия, которая постепенно снимется с производства. Она отличается не слишком хорошими параметрами по сравнению с другими сериями. С этой классической серией принято сравнивать все остальные.

Серия К555 (SN74LS) отличается от серии К155 малыми входными токами и меньшей потребляемой мощностью (ток потребления — почти втрое меньше, чем у К155). По быстродействию (по временам задержек) она близка к К155.

Серия КР531 (SN74S) отличается высоким быстродействием (ее задержки примерно в 3–4 раза меньше, чем у серии К155), но большими входными токами (на 25% больше, чем у К155) и большой потребляемой мощностью (ток потребления — больше в полтора раза по сравнению с К155).

Серия КР1533 (SN74ALS) отличается повышенным примерно вдвое по сравнению с К155 быстродействием и малой потребляемой мощностью (в четыре раза меньше, чем у К155). Входные токи еще меньше, чем у К555.

Серия КР1531 (SN74F) отличается высоким быстродействием (на уровне КР531), но малой потребляемой мощностью. Входные токи и ток потребления примерно вдвое меньше, чем у К155.

Серия КР1554 (SN74AC) отличается от всех предыдущих тем, что она выполнена по КМОП-технологии. Поэтому она имеет сверхмалые входные токи и сверхмалое потребление при малых рабочих частотах. Задержки примерно вдвое меньше, чем у К155.

Наибольшим разнообразием имеющихся микросхем отличаются серии К155 и КР1533, наименьшим — КР1531 и КР1554.

Надо отметить, что приведенные здесь соотношения по быстродействию стандартных серий довольно приблизительны и верны не для всех разновидностей микросхем, имеющихся в разных сериях. Точные значения задержек необходимо смотреть в справочниках, причем желательно в фирменных справочных материалах.

Микросхемы разных серий обычно легко сопрягаются между собой, то есть сигналы с выходов микросхем одной серии можно смело подавать на входы микросхем другой серии. Одно из исключений — соединение выходов ТТЛ-микросхем со входами КМОП-микросхем серии КР1554 (74AC). При таком соединении необходимо применение резистора номиналом 560 Ом между сигналом и напряжением питания (рис. 3.7).

 

Рис. 3.7. Сопряжение TTL с CMOS

 

При выборе той или иной серии микросхем следует также учитывать, что микросхемы мощной и быстрой серии КР531 создают высокий уровень помех по шинам питания, а микросхемы маломощной серии К555 очень чувствительны к таким помехам. Поэтому серию КР531 рекомендуется использовать только в крайних случаях, при необходимости получения очень высокого быстродействия. Не рекомендуется также применять в одном устройстве мощные быстродействующие микросхемы и маломощные микросхемы.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 4620; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.