Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вещественные числа. Любое число N в системе счисления с основанием q можно записать в виде

Любое число N в системе счисления с основанием q можно записать в виде

N = M×qP, 2.3

где Р – порядок числа,

М – мантисса, содержащая все цифры числа.

Запись числа в виде (2.3) называется представлением числа с плавающей точкой.

Если мантисса числа – правильная дробь (т.е. 0.1 £ М < 1), то число N называется нормализованным.

Пример. Десятичные числа: 312.41 = 0.31241×103; - 0.0000723917 = 0.723917×10-4. Двоичные числа: 0.000011 = 0.11× 2-100; - 101.01 = 0.10101× 211.

Нормальная форма позволяет при одинаковой разрядности получать существенно больший диапазон представления чисел. Это приводит к уменьшению вероятности переполнения разряд­ной сетки в ячейках хранения числа.

Структура записи нормализованного числа в компьютере в формате с n разрядами имеет следующий вид:

n-1 n-2 3 2 1 0

                       

Знак мантиссы

Смещенный порядок Абсолютная величина мантиссы

 

Смещенный порядок применяется для однообразного отображения положительных и отрицательных порядков. Например, порядок, принимающий значения в диапазоне – 32 ÷ + 31, представляется смещенным порядком, значения которого меняются от 0 до 64.

Сложение и вычитание нормализованных чисел производится путем сложения и вычитания их мантисс. Перед выполнением действия производится выравнивание порядков чисел.

Пример. 1.Сложить числа 0.10111×2-1 и 0.11011×210. Для выравнивания порядков мантисса первого числа сдвигается на три разряда вправо:

0.00010111 × 210

+ 0.11011 × 210

0.11101111 × 210

2.Выполнить вычитание 0.10101×210 – 0.11101×21. Для выравнивания порядков мантисса второго числа сдвигается на один разряд вправо:

0.10101 ×210

- 0.011101 ×210

0.001101 ×210

 

Результат получен не нормализованный. Поэтому его нормализуют к виду 0.1101×20.

При умножении нормализованных чисел их порядки складываются, а мантиссы перемножаются.

При делении нормализованных чисел из порядка делимого вычитается порядок делителя, а мантисса делимого делится на мантиссу делителя. Затем в случае необходимости полученный результат нормализуется.

При выводе из компьютера десятичных чисел для отображении их в нормализованном виде применяются записи вида:

- для чисел одинарной точности: МЕ ±Р

- для чисел двойной точности: МD±Р,

где М – мантисса числа, Р – порядок числа, а латинские буквы E и D означаю, что число имеет одинарную и соответственно двойную точность.

Пример. Число одинарной точности: 0.1234567Е + 16. Число двойной точности: 0.123456789012345D – 65.

<== предыдущая лекция | следующая лекция ==>
Целые числа со знаком | Лекция 3. Технические средства информационных технологий
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1068; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.