КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вероятность противоположного события
Обозначим буквами А1, А2,… Аn все несовместные равновозможные исходы данного испытания. Вместе они образуют полную систему событий W. Например, при подбрасывании игральной кости пространство W элементарных событий состоит из шести точек: Ω = {1, 2, 3, 4, 5, 6} (выпадение 1, 2, 3, 4, 5 или 6). Тогда сумма событий А1, А2,… Аn – достоверное событие, т.к. в результате опыта обязательно появится одно из событий А1, А2,… Аn (так, в нашем примере в результате бросания игральной кости обязательно выпадет число от 1 до 6), а вероятность достоверного события по свойствам вероятности равна 1. Следовательно, Р (А1+А2+…+Аn) = 1. Так как события А1, А2,… Аn попарно несовместны, то по теореме 2 их сумму можно представить как Р (А1) + Р (А2) +…+ Р(Аn), тогда Р (А1) + Р (А2) +…+ Р(Аn) = 1 Рассмотрим теперь противоположные события А и Ā. В сумме они образуют полную систему событий (А + Ā = Ω), следовательно сумма их вероятностей также равна 1: Следствие 1. Сумма вероятностей события А и события, ему противоположного, равна 1: Р(А) + Р(Ā) = 1. Тогда для нахождении вероятности события А можно использовать формулу: Р(А)= 1 - Р(Ā) и Р(Ā) = 1 - Р(А). Пример 13.1. Вероятность бесперебойной работы компьютера равно 0,9. Какова вероятность того, что при работе компьютер даст сбой? Решение. Событие А - бесперебойная работа компьютера, тогда противоположное ему событие Ā - при работе компьютер даст сбой. По формуле Р(Ā)= 1 - Р(А), где Р(А) = 0,9. Тогда Р(Ā)= 1 – 0,9 = 0,1. Ответ: Р(Ā) =0,1.
При решении задач бывает удобно пользоваться следующим фактом: Следствие 2. Вероятность появления хотя бы одного из исходов равна разности между 1 и противоположным событием (ни одного из исходов). Пример 13.2. Студент хранит собранную для дипломной работы информацию на 7 дисках, на четырех из которых есть статьи о новых информационных технологиях. Какова вероятность того, что хотя бы на одном из трех наудачу выбранных дисков есть статьи о новых информационных технологиях? Решение. Испытание – выбор наудачу одного диска из трёх (на четырех есть статьи о новых информационных технологиях). Пусть событие А - хотя бы на одном из выбранных дисков есть статьи о новых информационных технологиях. Если мы будем решать задачу, пользуясь правилом сложения, нам придется найти сумму следующих событий: · на одном из трех наудачу выбранных дисков есть нужные статьи; · на двух есть нужные статьи; · на трех есть нужные статьи. Мы же решим задачу, пользуясь следствием 2. Найдем противоположное событие Ā – ни на одном из трех наудачу выбранных дисков нет статей о новых информационных технологиях. Найдем вероятность события Ā по классической формуле вероятности:. Для этого надо знать m и n. Наше испытание заключается в выборе трех дисков из семи. Следовательно, n – число всех возможных исходов - равно числу выборок из 7 по 3. Порядок в каждой выборке не важен, и мы имеем дело с сочетаниями.
Событие Ā заключается в том, чтобы ни на одном из трех наудачу выбранных дисков не было статей о новых информационных технологиях, а таких дисков 7 – 4 = 3, значит, число благоприятных исходов m равно =1. Тогда. По формуле Р(А) = 1 - Р(Ā), тогда Р(А)= 1 –. Следовательно, вероятность того, что хотя бы на одном из трех наудачу выбранных дисков есть статьи о новых информационных технологиях, равна. Ответ: Р (А) = Контрольные вопросы: 1. Сформулируйте теорему о вероятности противоположного события. 2. Как при решении задач найти вероятность появления хотя бы одного исхода данного испытания? 3. Решите задачу, используя теоремы сложения вероятностей: В партии из 12 деталей 8 стандартных. Найти вероятность того, что среди наудачу взятых трех деталей есть хотя бы одна стандартная.
Дата добавления: 2014-01-06; Просмотров: 1675; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |