Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Связь между гладкостью функции и периодом малости коэффициентов Фурье

Лекция 2.

Теорема. Пусть функция определена на отрезке , разлагается на нем в тригонометрический ряд Фурье и непрерывна на нем вместе со своими производными до p –1 порядка включительно. Пусть Если p –ая производная функции кусочно непрерывна на интервале , то коэффициенты Фурье - бесконечно малые функции по отношению к .

Доказательство.

.

Здесь - коэффициенты Фурье для функции .

Продолжая аналогично интегрирование по частям, получим

. Из этих соотношений следует

Из этого соотношения или непосредственно можно получить аналогичное соотношение для .

Поэтому , где или - n –ый коэффициент Фурье.

По следствию из равенства Парсеваля для коэффициентов Фурье самой функции и ее производных.. Следовательно, 0. Теорема доказана.

Пример. Разложить в ряд Фурье функцию и построить график суммы ряда .

Продолжим заданную функцию периодически на всю ось. Тогда функция будет иметь разрывы первого рода в точках . В этих точках функция будет принимать значение , равное, по теореме Дирихле, полу сумме левого и правого пределов функции . В остальных точках значения функций и будут совпадать.

Вычислим коэффициенты Фурье.

,

.

. Проверьте, выполнив интегрирование по частям.

Из таких разложений часто можно получать суммы числовых рядов.

Например, подставим в разложение , получим

.

Подставим в разложение , получим

.

 

<== предыдущая лекция | следующая лекция ==>
Теорема Дирихле | Разложения в ряд Фурье функций, заданных на отрезке
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 314; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.