Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методом операционного исчисления




Решение дифференциальных уравнений и систем

Лекция 4.

Следствие. Вторая теорема разложения.

Пусть имеет в качестве особых точек только полюсы кратности . Тогда

 

Доказательство теоремы сводится к применению общей теоремы разложения и формулы вычисления вычета в полюсе порядка.

 

 

При решении дифференциальных уравнений и систем используется теорема о дифференцировании оригинала и ее следствие – теорема об изображении n-ой производной.

Метод решения основан на том, что преобразование Лапласа сводит дифференцирование в пространстве оригиналов к умножению на p в пространстве изображений. Поэтому дифференциальное уравнение с постоянными коэффициентами с пространстве оригиналов переходит в алгебраическое уравнение в пространстве изображений. При этом учитываются и начальные условия, что удобно при решении задачи Коши.

Получив решение алгебраического уравнения в пространстве изображений, мы получаем решение в виде некоторого изображения – функции от p. Остается найти соответствующий ему оригинал по свойствам преобразования Лапласа (теоремам подобия, смещения, запаздывания, дифференцирования и интегрирования) или теоремам разложения.

Пусть задано дифференциальное уравнение с постоянными коэффициентами относительно неизвестной функции и ее производных с правой частью – функцией , являющейся оригиналом

.

Требуется решить задачу Коши для этого уравнения при начальных условиях .

 

Применим преобразование Лапласа к обеим частям равенства.

.

Приведем коэффициенты при в левой части и перенесем члены, зависящие от начальных условий, в правую часть.

,

где - характеристический многочлен,

Найдем изображение решения

.

Здесь первое слагаемое дает вклад правой части в решение, второе слагаемое – вклад начальных условий. Если начальные условия нулевые, то и второе слагаемое пропадает.

 

Примеры.

 

1.

,

Первые два слагаемых соответствуют , оригинал для третьего слагаемого находим по теореме об интегрировании оригинала: .

.

 

2.

по теореме о дифференцировании изображения.

 

3.

4.

.

Если свертку вычислить трудно, то можно найти оригинал для последнего слагаемого по теореме разложения.

=.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 331; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.