КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Замечания
Определение Формула называется тождественно-истинной (тождественно-ложной), если при любом замещении входящих в нее предикатных символов конкретными предикатами она переходит в тождественно-истинный (тождественно-ложный) предикат (если она не замкнута) или в истинное (ложное) высказывание (если она замкнута).
1) Тождественно-истинная формула и тождественно-истинный предикат – не одно и то же. Тождественная истинность конкретного предиката относится только к его области определения, в то время как тождественная истинность формулы – это «абсолютная истинность», истинность для любых предметных областей. Аналогично – для тождественной ложности. 2) Из определения непосредственно следует, что формула со свободными переменными тождественно-истинна тогда и только тогда, когда тождественно-истинна формула . 3) Отрицание тождественно-истинной формулы есть, очевидно, формула тождественно-ложная, а отрицание тождественно-ложной – тождественно-истинная.
Для расширения возможностей тождественных преобразований формул логики предикатов используются основные свойства кванторов. I) Перестановка одноименных кванторов: ; (I.1) . (I.2) 2) Связь между разноименными кванторами: ; (II.1) . (II.2) 3) Вынесение кванторов за скобки:
Замечание Условие, чтобы формула Ф не содержала свободной переменной x, в соотношениях (III.1 – III.4) является существенным: если оно не выполнено, то соотношения могут нарушаться (после вынесения квантора переменная x в формуле Ф из свободной может превратиться в связанную). 4) Переименование связанных переменных:
Замечание Все введенные равносильности останутся справедливыми, если заменить в них F(x) (соответственно F(x, y)) любой формулой G, содержащей свободную переменную x (соответственно x и y) и, возможно, также и другие свободные переменные.
Отметим в общем виде самый простой из частных случаев, когда для доказательства равносильности формул логики предикатов удается воспользоваться средствами логики высказываний. Утверждение 2.1 Если в равносильных формулах логики высказываний заменить элементарные высказывания произвольными предикатными символами так, чтобы одно и то же элементарное высказывание заменялось в обеих формулах одним и тем же символом, то возникающие при этом формулы логики предикатов будут также равносильны. Утверждение 2.2 Если в тождественно-истинной формуле логики высказываний заменить элементарные высказывания произвольными предикатными символами, то возникающая при этом формула логики предикатов также тождественно-истинна (то же справедливо для тождественно-ложных формул). С помощью свойств кванторов можно производить над формулами логики предикатов тождественные преобразования, причем ввиду утверждения 2.1 в этих преобразованиях можно использовать также любые равносильности логики высказываний. Производя тождественные преобразования в определенном порядке, можно для каждой формулы получить ей равносильную, имеющую особенно простое строение.
Дата добавления: 2014-01-06; Просмотров: 359; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |