КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Представление числовой информации с помощью систем счисления
Хранение информации. Носители информации: · ОЗУ компьютера (оперативная память). · Гибкие диски 3,5” · Оптические диски CD, DVD и др. · Жёсткие диски. · Переносные запоминающие устройства – flash и др. Передача информации: источник, приёмник, канал. Обработка информации: компьютер и др.
ТЕМА 2 ”Представление информации в компьютерах” Простейшие способы представления данных: 1. Последовательность символов (текст); 2. Вещественные и целые числа (числовые данные); 3. Изображения (графика, фотографии, рисунки, схемы); 4. Звук (речь, музыка); 5. Видео (фильм, анимация).
Существует множество систем представления данных. Наиболее распространенная из них основана на использовании двух цифр – 0 и 1. С помощью этих цифр можно выразить два понятия – да или нет, истина или ложь, наличие электрического импульса или отсутствие и т.п. Информация, представленная в виде последовательности нулей и единиц, называется машинным кодом, а такой способ представления информации – кодированием двоичным ( бинарным ) кодом. Широкое применение двоичного кода в вычислительной технике обусловлено его простотой и надежностью. Компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами: · для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной; · представление информации посредством только двух состояний надежно и помехоустойчиво; · возможно применение аппарата булевой алгебры для выполнения логических преобразований информации; · двоичная арифметика намного проще десятичной. Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел. Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хорошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Система счисления — это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами. Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит. Римская непозиционная система счисления. Самой распространенной из непозиционных систем счисления является римская. В качестве цифр в ней используются: I (1), V (5), X (10), L (50), С (100), D (500), М (1000). Значение цифры не зависит от ее положения в числе. Например, в числе XXX (30) цифра Х встречается трижды и в каждом случае обозначает одну и ту же величину - число 10, три числа по 10 в сумме дают 30. Величина числа в римской системе счисления определяется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа - прибавляется. Например, запись десятичного числа 1998 в римской системе счисления будет выглядеть следующим образом: MCMXCVIII= 1000+(1000- 100)+(100- 10) +5+ 1+1+1. Позиционные системы счисления. Первая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричной, то есть в ней использовалось шестьдесят цифр! Интересно, что до сих пор при измерении времени мы используем основание, равное 60 (в 1 минуте содержится 60 секунд, а в 1 часе — 60 минут). В XIX веке довольно широкое распространение получила двенадцатеричная система счисления. До сих пор мы часто употребляем дюжину (число 12): в сутках две дюжины часов, круг содержит тридцать дюжин градусов и так далее. В позиционных системах счисления количественное значение цифры зависит от ее позиции в числе. Наиболее распространенными в настоящее время позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная. Каждая позиционная система имеет определенный алфавит цифр и основание. В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения одинаковых цифр, стоящих в соседних позициях числа. Десятичная система счисления имеет алфавит цифр, который состоит из десяти всем известных, так называемых арабских, цифр, и основание, равное 10, двоичная — две цифры и основание 2, восьмеричная — восемь цифр и основание 8, шестнадцатеричная — шестнадцать цифр (в качестве цифр используются и буквы латинского алфавита) и основание 16 (табл. 2.2). Таблица 1. Позиционные системы счисления
Десятичная система счисления. Рассмотрим в качестве примера десятичное число 555. Цифра 5 встречается трижды, причем самая правая цифра 5 обозначает пять единиц, вторая справа— пять десятков и, наконец, третья справа — пять сотен. Позиция цифры_ в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим. В десятичной системе цифра, находящаяся в крайней справа позиции (разряде), обозначает количество единиц, цифра, смещенная на одну позицию влево, — количество десятков, еще левее — сотен, затем тысяч и так далее. Соответственно имеем разряд единиц, разряд десятков и так далее. Число 555 записано в привычной для нас свернутой форме. Мы настолько привыкли к такой форме записи, что уже не замечаем, как в уме умножаем цифры числа на различные степени числа 10. В развернутой форме записи числа такое умножение записывается в явной форме. Так, в развернутой форме запись числа 555 в десятичной системе будет выглядеть следующим образом: Как видно из примера, число в позиционной систем! счисления записывается в виде суммы числового ряда степе ней основания (в данном случае 10), в качестве коэффициентов которых выступают цифры данного числа. Для записи десятичных дробей используются отрицательные значения степеней основания. Например, число 555,510 в развернутой форме записывается следующим образом: В общем случае в десятичной системе счисления запись числа А, которое содержит п целых разрядов числа и т дробных разрядов числа, выглядит так: Коэффициенты а в этой записи являются цифрами десятичного числа, которое в свернутой форме записывается так: Из вышеприведенных формул видно, что умножение или деление десятичного числа на 10 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной, на один разряд соответственно вправо или влево. Например: Двоичная система счисления. В двоичной системе счисления основание равно 2, а алфавит состоит из двух цифр (0 и 1). Следовательно, числа в двоичной системе в развернутой форме записываются в виде суммы степеней основания 2 с коэффициентами, в качестве которых выступают цифры О или 1. Например, развернутая запись двоичного числа может выглядеть так: Свернутая форма этого же числа: Коэффициенты а. в этой записи являются цифрами (0 или 1) двоичного числа, которое в свернутой форме записывается так: Из вышеприведенных формул видно, что умножение или деление двоичного числа на 2 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд соответственно вправо или влево. Например:. Позиционные системы счисления с произвольным основанием. Возможно использование множества позиционных систем счисления, основание которых равно или больше 2. В системах счисления с основанием q (q-ичная система счисления) числа в развернутой форме записываются в.виде суммы степеней основания q с коэффициентами, в качестве которых выступают цифры О, 1, q-1: Коэффициенты а. в этой записи являются цифрами числа, записанного в q-ичной системе счисления. Так, в восьмеричной системе основание равно восьми (q = 8). Тогда записанное в свернутой форме восьмеричное число А = 673,28 в развернутой форме будет; иметь вид: В шестнадцатеричной системе основание равно шестнадцати (q = 16), тогда записанное в свернутой форме шестнадцатеричное число –A16 = 8A,F16 в развернутой форме будет иметь вид: Если выразить шестнадцатеричные цифры через их десятичные значения (А=10, F=15), то запись числа примет вид:
Дата добавления: 2014-01-06; Просмотров: 1544; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |