Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы анализа основной тенденции развития в рядах динамики и прогнозирование

Одной из важнейших задач статистики является определение в рядах динамики основной тенденции развития.

Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.

Для выявления тенденции в рядах динамики используют специальные методы:

1. Метод укрупнения интервалов - предполагает переход от первоначального динамического ряда к рядам с большими временными промежутками, например, данные за каждый месяц года заменяют квартальными, годовые — пятилетними и т.д. По сформированным укрупненным интервалам либо просто суммируют уровни первоначального ряда, либо рассчитывают средние величины. В результате отклонения в уровнях первоначального ряда, обусловленные случайными причинами, сглаживаются, и более явно обнаруживается действие основных факторов (общая тенденция).

2. Метод скользящей средней – состоит в замене фактических значений показателя их усредненными величинами, расчет которых проводят путем последовательного смещения начала отсчета на единицу времени (скольжения), т.е. постепенно исключают из интервала первые уровни и включают последующие. Полученная средняя относится к середине укрупненного интервала.

Наиболее часто на практике применяются трехчленные средние:

.

Полученный таким образом сглаженный ряд более четко выражает основную тенденцию развития изучаемого явления.

3. Метод аналитического выравнивания – заключается в том, что находится уравнение , график которого наилучшим образом отражает основную тенденцию ряда динамики.

Аналитическое выравнивание позволяет не только определить основную тенденцию развития явления во времени, но и выполнять расчеты для таких периодов, по которым нет информации. При этом нахождение недостающих данных внутри динамического ряда называется интерполяцией, а нахождение значений за пределами анализируемого периода (т.е. в будущем) называется экстраполяцией.

Таким образом, на основе экстраполяции данных можно прогнозировать развитие явления в будущем, т.к. такое прогнозирование предполагает, что найденная закономерность развития внутри динамического ряда сохраняется и вне этого ряда.

Например, путем аналитического выравнивания получено, что основная тенденция явления выражается уравнением . Зная это уравнение и подставляя в него значения t, находящиеся за пределами этого ряда, можно построить прогноз. Пусть t=11, тогда прогнозируемое значение будет равно .

Однако следует помнить, что в действительности тенденция развития того или иного явления не остается неизменной, поэтому полученные путем экстраполяции прогнозируемые значения следует рассматривать как вероятностные оценки.

<== предыдущая лекция | следующая лекция ==>
Показатели анализа рядов динамики | Изучение сезонных колебаний
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1102; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.