КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Ведение. Развитие энергетики в мире
Рекреационное использование био ресурсов Культивирование продовольствия Экологические основы природопользования Биосфера • Все сообщества живых организмов вместе с их средой обитания всех уровней: экосистемы, биоценозы, биомы; • Биосфера -оболочка Земли, где распространена жизнь, единая динамическая система, созданная и регулируемая жизнью; • Биосфера -область существование ныне живущих организмов; • Протяженность биосферы: от -10 км до +10 км вверх • Эдуард Зюсс впервые использовал этот термин, фундаментальную концепцию биосферу разработал в 20-х годах Вернадским;
Осн. законы: • Круговорот вещ-в и поток энергии • Круговорот вешеств - биогеохим. циклы биогенных элементов: C, H, O, N, Ca, S; • Круговорот углерода. Вся земная жизнь основана на углероде и его круговороте в живой природе. Осн. Запас С в воздухе (СО2). • Устойчивость биосферы обеспечивается биоразнообразием видов, генов, экосистем. Чем разнообразнее, тем устойчивее. • Сфера разума- ноосфера (Вернадский, Тейяр-Де-Шарден)
Прикладная экология
• Общественный характер воздействия человека на природную среду обитания привел к экосоциальным связям человека и природы; Управление био ресурсами осуществляется путем: • Потребления; • Контроля проблемных организмов (сорняки, возбудители и переносчики заболевания, нежелательные потребители с/х продукции); • Использование животного и растительного мира в рекреационных, познавательных, эстетических целях. Основные формы пользования биоресурсами: • Добывание • -собирательство • -охота • -рыболовство • Культивирование • Собирательство растений и мелких животных - исходная форма трофических связей первобытных людей • Крайне низкая эффективность: для прокорма 1 чела нужно 500га • Охота важнейший этап ускорения социальной эволюции человека, обесп. • Потребление белков • Изготовление орудий охоты и труда, усиливших и удлинивших руку • Формирование социальных связей • Проявление альтруизма: выделение пищи стареющим • Современная охота • Сегодня не является источником белка; потеряла первоначальный смысл • Рыболовство • Четверть потребления белка в мире приходится на рыбу • Браконьерство • С/х увеличение производительности земель • С/х сняло трофические ограничения на рост численности человечества
• Нац. Парк Крюгера • Эстетика природы
Главной и, безусловно, положительной новостью современного этапа развития мировой энергетики стал отход от энергоинтенсивного типа развития. Действительно, в последние 100-120 лет рост энергетических потребностей человечества имел явно выраженный экспоненциальный характер и вдвое опережал экспоненту роста народонаселения. Более внимательное рассмотрение этого процесса позволило выделить в нем два 50-летних цикла. Первый начался в 1880-х гг. (когда появилась возможность оценки энергопотребления на базе пусть разрозненной, но регулярной статистики) и закончился примерно десятилетней стабилизацией мирового потребления энергии в 1930-е гг. из-за <великой депрессии> и мировой войны. Второй цикл начался послевоенным восстановлением в конце 1940-х гг., дал еще более бурный взлет энергопотребления и завершился в конце 1980-х - начале 1990-х гг. Одной из причин его окончания стал глубокий кризис большинства стран плановой экономики, на долю которых до этого приходилась четверть мирового расхода энергии. Но существуют и более фундаментальные причины, проявившиеся в прекращении роста среднего по миру расхода энергии на душу населения. Стабилизация душевого потребления энергии - чрезвычайно знаменательный факт, который, впрочем, в долгосрочной ретроспективе является скорее правилом, чем исключением. Действительно, по данным в период II тысячелетия до н. э. и по VIII век н. э. государства Средиземноморья (включая греческие полисы и Римскую империю), Ближнего Востока, Индии и Китая имели душевой расход энергии 0,15-0,18 т у. т. И только промышленная революция ХVII-XVIII веков дала в Европе старт экспоненте энергопотребления, которая с конца XIX века переросла в мировую тенденцию удвоения душевого энергопотребления примерно каждые 40 лет. Слом этой угрожающей тенденции наступил в последней четверти ХХ века. Он начался в промышленно развитых странах, которые после нефтяного кризиса 1970-х гг. получили мощный экономический стимул к энергосбережению и, главное, в значительной мере насытили наиболее энергоемкие жизненные потребности населения: в еде, жилье, одежде и средствах перемещения. Россия (СССР) проигнорировала эту тенденцию и отчасти потому поплатилась, пережив беспрецедентный в мирное время экономический спад. Удивительно, но в последние годы стабилизацию душевого расхода энергии демонстрирует и новый энергетический гигант - Китай. Реализация описанных возможностей создает новое качество взаимодействия экономики и энергетики, когда рост потребления энергии все больше отстает от темпов экономического развития. Вплоть до начала 1970-х гг. каждый процент роста валового внутреннего продукта (ВВП) в среднем по миру требовал примерно такого же прироста потребления и производства энергии. Однако в течение двух последних десятилетий 1%-ный прирост мирового ВВП достигается при 0,5% прироста энергопотребления, а в перспективе этот главный индикатор энергетической эффективности экономики может снизиться до 0,25-0,3%. Изменения динамики энергопотребления сопровождаются серьезными трансформациями всей производственной структуры энергетики. Детальный анализ в структуры производства и потребления первичных энергоресурсов в США, России и мире в целом (т. е. изменений доли каждого вида первичной энергии в общем энергопотреблении показал следующее. В эпоху индустриального развития промышленно развитые страны вошли (США примерно в 1860 г., Россия на 20 лет позже) при доминировании дров и мускульной силы животных, но их доля в общем потреблении и производстве энергоресурсов стала быстро падать. Это вызывалось не исчерпанием лесных и кормовых ресурсов - снижение доли дров и рабочего скота еще долгие десятилетия сопровождалось ростом объемов их использования. Массовое применение угля вместо дров и паровых машин (работающих на том же угле) вместо рабочего скота и энергии воды было обусловлено их возможностями в плане обеспечения высоких мощностей и температур, а также, что особенно важно, на порядок большей концентрацией потока извлечения энергоресурсов из природной среды. Только при этом удавалось удовлетворять быстро растущие потребности общества в энергии. Таким образом, для индустриальной цивилизации и созданной ею энергетики характерны следующие тенденции: смена каждые 40-50 лет доминирующего энергоресурса, но не из-за исчерпания его запасов (хотя сопутствующее этому удорожание служит экономическим сигналом необходимости замещения данного ресурса), а благодаря более высокому качеству нового; прежние энергоресурсы никогда не вытесняются полностью, а лишь снижают свою долю в производстве и потреблении первичной энергии, часто продолжая расти абсолютно благодаря техническому прогрессу и особым нишам предпочтительности для потребителей; каждый следующий доминирующий энергоресурс имеет примерно вдвое более высокое качество; так, теплосодержание единицы массы корма для рабочего скота, дров, угля, нефти (газа) и урана (при его использовании в тепловых реакторах) соотносятся как 0,17: 0,35: (0,7-1): (1,4-1,6): (2,6-2,8), если за единицу принять теплосодержание 1 т у. т. Столетний процесс освоения новых энергоресурсов без полного вытеснения старых закономерно привел в конце ХХ века к новому качеству - диверсификации производства и потребления энергии с перерождением прежнего доминирования одного-двух ресурсов к более равномерному использованию всех освоенных видов топлива и энергии. Уменьшая энтропию всей системы энергоснабжения, эта новая тенденция способствует росту ее устойчивости. Тенденция к диверсификации наиболее отчетливо проявилась в последние годы в энергетике развитых стран и регионов, особенно в Северной Америке. За последние 30 лет здесь практически выровнялись доли производства основных видов органического топлива - нефти, газа и угля. Одновременно, хотя и на гораздо более низком уровне, сравнялись доли производства возобновляемых ресурсов - гидроэнергии, биомассы (включая дрова и отходы) - и новых способов использования таких традиционных ресурсов, как ветер и солнце. Важно также, что совокупность возобновляемых ресурсов достигла доли атомной энергии и в сумме с ней вплотную приблизилась к доле каждого из основных видов топлива. Для последней четверти ХХ века характерны коренные изменения в размещении энергетики по регионам мира с переходом доминирования от развитых к развивающимся странам. С 1980 по 2000 гг. доля развитых стран в энергопотреблении мира сократилась с 76 до 64%, а к 2020 г. прогнозируется ее уменьшение до 50-54%. Расширяющаяся системная среда стимулирует такие традиционные направления научно-технического прогресса, как рост единичной мощности энергетических объектов и пропускных способностей связей для удешевления добычи (преобразования) и распределения энергии; повышение используемых в энергетике температур и давлений; концентрация и интенсификация потоков энергии; рост автоматизации и точности управления энергетическими процессами (от горизонтального бурения скважин до обеспечения надежности и оптимизации режимов работы континентальных энергетических систем); использование гигантских объемов информации (от горно-геологических характеристик месторождений топлива до параметров энергетического оборудования потребителей) и др. Но еще более важно, что развитие энергетических систем активно способствует созданию качественно новой энергетики - сверхпроводящих электрических генераторов, накопителей и линий электропередачи, термоядерной энергетики и т. д. Одновременно с победным шествием системной энергетики в ХХ веке набирали силу новые направления научно-технического прогресса, возрождающие на новой технологической основе индивидуальное энергоснабжение человека (семьи) в быту и малом бизнесе с вытеснением архаичных индивидуальных энергоустановок и все большей независимостью от систем централизованного энергоснабжения. Автономности потребителей способствует распространение дизельных и газотурбинных установок средней и малой мощности, высокоинтенсивных теплогенераторов и других средств электро- и теплоснабжения отдельных домов и малых предприятий. Ведутся интенсивные разработки топливных элементов для прямого преобразования химической энергии топлива (водорода и метана) в электроэнергию, а также разнообразных аккумуляторов электроэнергии, в том числе с использованием эффекта сверхпроводимости. На этой основе впоследствии удастся создать мощную и экономичную техническую базу для дальнейшей индивидуализации энергоснабжения с сильным воздействием на расселение людей. Индивидуальная энергетика обычно обеспечивает более экономное использование энергии, но обслуживающая человека суммарная установленная мощность энергоустановок при этом значительно увеличивается. Такой <обмен> большей установленной мощности на меньшее энергопотребление может стать реальной основой более энергоэкономного стиля жизни и стабилизации (если не снижения) душевого энергопотребления. Одновременно это станет благом для окружающей среды, поскольку каждый человек стремится, чтобы контролируемые им энергетические процессы минимально портили среду его обитания.
Раздел 1. Техническая термодинамика.
Дата добавления: 2014-01-06; Просмотров: 981; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |