КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Цикл воздушной холодильной установки
Классификация холодильных установок, хладагенты и требования к ним.
В соответствии со вторым законом термодинамики отмечалось, что при обратном цикле Карно можно, затрачивая механическую работу, отнять теплоту от источника с низкой температурой и перенести ее к источнику с более высокой температурой. Машины, непрерывно поддерживающие температуры тел ниже температуры окружающей среды, называют холодильными. Искусственное охлаждение помещений и различных тел находит широкое применение в народном хозяйстве (при строительстве подземных железных дорог, в угольных бассейнах, в горных рудниках, в химической и газовой промышленностях, на машиностроительных заводах, где производится термическая обработка деталей машин при низких температурах). Холод имеет огромное значение для сохранения пищевых продуктов. Кондиционирование воздуха создает благоприятные условия в производственных и общественных зданиях и т. д. Для получения холода используются различные установки, в которых применяют в качестве рабочего тела газообразные тела. Холодильные установки можно разделить на две группы. К первой группе относятся газовые или воздушные установки, в которых впервые было осуществлено промышленное получение холода. Ввиду малого холодильного эффекта и больших габаритов отдельных аппаратов такие установки не получили широкого распространения. Ко второй группе относятся компрессорные паровые установки. Рабочим телом (холодильным агентом) в них являются пары различных веществ: аммиака NH3, углекислоты С02, сернистого ангидрида S02, фреонов (фторохлорпроизводные углеводородов), характерным представителем которых является фреон-12 (CF2C12), и др. Паровые холодильные установки, обладающие большой надежностью действия, получили в промышленности самое широкое распространение. Кроме газовых и паровых существуют холодильные установки, основанные на других принципах: пароэжекторные и абсорбционные. В них для производства холода затрачивается не механическая работа, а теплота какого–либо рабочего тела с высокой температурой. В пароэжекторной холодильной машине для сжатия холодильного агента используется кинетическая энергия струи рабочего пара произвольного вещества. Пароэжекторная холодильная установка отличается невысоким термодинамическим совершенством и в промышленности применяется редко. Более широкое распространение получили абсорбционные холодильные установки. В них для получения холодильного эффекта используется (как и в пароэжекторных) энергия в виде теплоты. Холодильная установка в отличие от теплового двигателя работает по обратному, или холодильному, циклу, наиболее совершенным типом которого является обратимый обратный цикл Карно (рис. 1.25.1). Рис. 1.25.1 В процессе 1-4 к холодильному агенту подводится удельное количество теплоты , отнимаемое от охлаждаемых тел; оно изображается пл. 51465. В процессе 2-3 от холодильного агента отводится удельное количество теплоты изображаемое пл. 23652. Это количество теплоты передается верхнему источнику теплоты при температуре, равной постоянной температуре в процессе 3-2. Пл. 12341 эквивалентна затрачиваемой механической работе. Показателем совершенства обратного цикла является холодильный коэффициент Чем больше отнимается удельного количества теплоты и чем меньше при этом затрачивается механической работы или чем больше , тем совершенней холодильный цикл.
Рис..126.1 На рис. 1.26.1 изображена схема воздушной холодильной установки, где в качестве рабочего тела применяют воздух, являющийся наиболее удобный, безвредным и доступным рабочим телом. Воздушная холодильная установка работает следующим образом. Воздух, охлаждающий помещение 1, сжимается в компрессоре 2, в результате чего температура его увеличивается. Сжатый воздух при постоянном давлении нагнетается в теплообменник 3, в котором охлаждается водой до температуры окружающей среды. После этого сжатый воздух поступает в расширительный цилиндр, или детандер 4, где расширяется до начального давления. При расширении температура воздуха падает до –60 или –70 °С и холодный воздух направляется для охлаждения помещения, где, нагреваясь, опять поступает в компрессор. Идеальный цикл воздушной холодильной установки представлен в и диаграммах (рис. 1.26.2 и 1.26.3).
Рис. 1.26.2 Рис. 1.26.3
Воздух в процессе 1-2 адиабатно сжимается от давления до . В изобарном процессе 2-3 от воздуха отводится удельное количество теплоты внешнему источнику и температура его понижается от до . При адиабатном расширении в процессе 3-4 воздух дополнительно охлаждается от температуры до . Далее в изобарном процессе 4-1 происходит отвод теплоты от охлаждаемого помещения (теплоотдатчика), в результате чего воздух нагревается от до . Работа, затрачиваемая на осуществление цикла, равна разности удельных количеств теплоты и . Считая теплоемкость постоянной, имеем: , , . Тогда холодильный коэффициент цикла . Из адиабатных процессов 1-2 и 3-4 и но , а , тогда , или, по свойствам пропорции, . Окончательно имеем , (1.26.1) где –температура охлаждаемого помещения или температура воздуха, засасываемого в компрессор; –температура сжатого воздуха. Цикл воздушной холодильной установки внешне необратим, так как отвод теплоты осуществляется в окружающую среду с постоянной температурой, в пределе равной . Подвод теплоты происходит от охлаждаемого помещения, в котором должна поддерживаться постоянная температура, не превышающая . Таким образом, из-за несовершенства цикла воздух после компрессора должен перегреваться на разность температур и охлаждаться ниже температуры охлаждаемого помещения на . Наиболее совершенным процессом отвода теплоты был бы изотермический процесс 5-3 (рис. 1.26.3), а процессом подвода теплоты – изотермический процесс 6-1. При этом указанные процессы можно было бы в пределе провести обратимо. Но цикл 1-5-3-6-1 будет обратимым циклом Карно. Следовательно, лишний раз подтверждается, что обратимый обратный цикл Карно является наиболее совершенным циклом холодильной установки. По сравнению с циклом Карно в идеальном цикле воздушной холодильной установки дополнительно затрачивается работа, равная сумме пл. 2352 и 1641. При этом количество теплоты, отбираемое от охлаждаемого помещения за один цикл, будет меньше на величину пл. 1641 по сравнению с теплотой в цикле Карно. Холодильный коэффициент эквивалентного обратного цикла Карно, как это следует из рис. 1.26.3, , поскольку , то . Цикл воздушной холодильной установки является термодинамически несовершенным, а установка малоэкономична и громоздка.
Дата добавления: 2014-01-06; Просмотров: 502; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |