Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производительность, напор и давление, создаваемые нагнетателем

Классификация нагнетателей. Области применения

Нагнетатели классифицируются:

1) машины для подачи жидких сред;

2) машины для подачи газовых сред.

1) Гидравлические машины классифицируются на:

- гидравлические двигатели;

- насосы;

- гидравлические передачи.

Насосы в свою очередь классифицируются:

- лопастные;

- объемные;

- струйные;

-пневматические.

2) Машины для подачи газовых сред делятся (в зависимости от развиваемого ими давления):

- вентилятор;

- газодувка;

- компрессор.

Вентилятор – машина, перемещающая газовую среду при степени повышения давления

Газодувка – машина, работающая при , но искусственно неохлаждаемая.

Компрессор сжимает газ при и имеет искусственное (обычно водяное) охлаждение полостей, в которых происходит сжатие газа.

Гидропередачи – конструктивные комбинации, служащие для передачи механической энергии с вала двигателя на вал приводной машины гидравлическим способом.

Гидропередача состоит из насоса, гидродвигателя и системы трубопроводов с устройствами для распределения и регулирования потоков рабочей жидкости.

Насос служит для создания потока жидкой среды.

Гидродвигатели – машины, превращающие энергию потока жидкости в механическую энергию (гидротурбины, гидромоторы).

Подача – объем жидкости, подаваемой нагнетателем в единицу времени.

Подача насоса 3/с), вентилятора 3/с, м3/ч).

Напор – энергия, сообщенная единице веса жидкости, прошедшей через насос.

, [м]. (6.1.1)

Мощность – энергия, затрачиваемая или сообщаемая нагнетателю в единицу времени.

Полезная мощность:

(6.1.2)

Мощность на валу:

, (6.1.3)

где - КПД нагнетателя.

КПД нагнетателя отражает потери мощности в нем.

Потери бывают:

- механические ;

- объемные ;

- гидравлические .

. (6.1.4)

Область применения нагнетателей.

В системах теплоснабжения центробежные насосы применяются для подачи воды.

В системах приточно-вытяжных установок зданий применяются вентиляторы.

В теплоэнергетических установках насосы применяются для питания котлоагрегатов, подачи конденсата и т.д.

Сжатый воздух как энергоноситель применяется в различных пневматических устройствах на заводах, в горно - добывающей и нефтяной промышленности, в строительстве. Т.е. компрессоры используются практически во всех отраслях народного хозяйства.

Основными величинами,, характеризующими работу машин, являются подача, напор и давление, ими развиваемые. Энергия, сообщаемая потоку жидкости или газа машиной, вполне определяется этими величинами и плотностью подаваемой среды. Гидродинамическое и механическое совершенство машины характеризуется ее полным КПД.

Подача — количество жидкости (газа), перемещаемое машиной в единицу времени.

Если подачу измеряют в единицах объема, то ее называют объемной и обозначают Q.

Системой СИ введена массовая подача М, кг/с, — масса жидкости (газа), подаваемой машиной в единицу времени. Очевидно, что

(6.2.1)

где — плотность среды, кг/м3; — объемная подача, м3

При отсутствии утечек массовая подача одинакова для всех сечений проточной полости машины независимо от рода подаваемой среды. Объемная подача практически одинакова по всей длине проточной полости только в насосах и приблизительно одинакова в вентиляторах. В компрессорах вследствие существенного повышения давления происходит уменьшение удельного объема газа и объемная подача по длине проточной полости падает.

В расчетах принято исчислять объемную подачу компрессоров при условии всасывания или при нормальных условиях, т. е. при параметрах среды Т= 293 К, — 100 кПа, = 1,2 кг/м3.

Подача насоса (вентилятора, компрессора) зависит от размеров и скоростей движения его рабочих органов и свойств трубопроводной системы, в которую он включен.

По ГОСТ 17398-72 «Насосы. Термины и определения»
давление, развиваемое насосом, определяется зависимо-
стью:

 

, (6.2.2)

где и — соответственно давления на входе в насос (начальное) и на выходе из насоса (конечное), Па; р — плотность среды, подаваемой насосом, кг/м3; си и ск—' средние скорости потока на входе и выходе, м/с; z„ и гк — высоты расположения центров входного и выходного сечений насоса.

Государственный стандарт устанавливает отчетливое понятие напора как величины, связанной с давлением соотношением:

. (6.63.3)

Такое понятие напора как величины, исчисляемой в едини­цах длины, вполне согласуется с основными положениями гидромеханики.

Перейдем от давлений к напорам:

. (6.2.4)

Полученное равенство определяет полный напор, развиваемый насосом.

Если пренебречь приростом скоростного напора , значение которого в некоторых случаях невелико, то полный напор машины представится только стати­ческой частью его , м:

. (6.2.5)

Важной величиной, характеризующей насосы и венти­ляторы с энергетической стороны, является их удельная полезная работа , Дж/кг:

, (6.2.6)

представляющая собою работу, получаемую потоком от рабочих органов машины, отнесенную к 1 кг массы жидкости (газа).

Работа L, подводимая на вал машины для приведения ее в действие, отнесенная к 1 кг массы подаваемой среды, называется удельной работой машины; она в основном определяет необходимую мощность приводного двигателя машины. Из-за потерь энергии в машине удельная полезная работа машины меньше ее удельной работы.

Удельная работа компрес­соров вычисляется особо в за­висимости от вида термодина­мического процесса, протекаю­щего в компрессорах.

 

 

6.3. Мощность и КПД нагнетателей. Совместная работа насоса и сети

 

Рабочие органы машины — лопасти, поршни — работают в потоке и увеличивают его энергию. Для проведения этой работы к валу насоса должна непрерывно подводиться энергия от двигателя.

Аналогично понятию удельной полезной работы в гид­ромашиностроении введены понятия полезной мощности насоса и мощности насоса.

Полезная мощность машины (насоса, вентилятора) — работа, сообщаемая машиной в секунду подаваемой среде, определяется соотношением:

. (6.3.1)

Из формулы следует из представления о работе как о произведении силы на длину пути. При этом машина совершает в секунду полезную работу, сообщаемую подаваемой среде. Делением на 1000 выражают полезную мощность в кило­ваттах.

. (6.3.2)

В системе МКГСС полезная мощность определяется формулой:

. (6.3.3)

Мощность , подводимую от двигателя на вал насоса (вентилятора), называют мощностью насоса (вентилятора).

Потери энергии, неизбежные в любом рабочем процессе, приводят к неравенству Nп<N. Процесс работы машины тем совершеннее, чем меньше Na отличается от N.

Эффективность использования насосом энергии, к нему подводимой, оценивают КПД насоса — отношением полезной мощности к мощности насоса,

. (6.3.4)

В рабочих условиях КПД зависит от многих факторов: типа, размера и конструкции машины, рода перемещаемой среды, режима работы машины, характеристики сети, на которую машина работает.

Для оценки энергетической эффективности установки в целом, состоящей из машины и двигателя к ней, пользуются КПД установки :

(6.3.5)

где — электрическая мощность, подводимая к двигателю.

Для оценки эффективности компрессоров служат отно­сительные термодинамические КПД.

 

Совместная работа насоса и трубопроводной системны

Работа насоса, присоединенного к системе водопроводов, находится в зависимости от гидравлических свойств этой системы, называемой сетью. Рассмотрим условия работы машины на примере насосной установки, полагая систему устойчивой.

Первое условие связи насоса с трубопроводной системой следует из уравнения неразрывности и заключается в равенстве массовых подач, проходящих через насос и присоединенные к нему всасывающий и напорный трубопроводы:

(6.3.6)

Для несжимаемой жидкости и поэтому имеет место равенство объемных подач:

. (6.3.7)

Уравнение сохранения энергии с учетом полезной работы, передаваемой потоку насосом,

, (6.3.8)

где —потери напора в трубах

В области развитой турбулентности потери напора подчинены квадратичному закону и поэтому:

. (6.3.9)

Сумма коэффициентов, содержащихся в скобках, с учетом поправки на разницу в подачах и может быть принята постоянной и равной . Тогда

Задавая произвольные значения Q, вычисляем соответствующие значения и наносим на график ряд точек, соединяя которые плавной кривой получа­ем характеристику сети .

 

Раздел 7. Двигатели внутреннего сгорания.

<== предыдущая лекция | следующая лекция ==>
Теплоэлектроцентрали | Принцип работы четырехтактного двигателя
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1846; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.036 сек.