КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Компрессорах
Термодинамический анализ процессов в Компрессор – это устройство, предназначенное для сжатия и перемещения газов. Принцип действия поршневого компрессора (рис. 1.36): при движении поршня слева направо давление в.цилиндре становится меньше давления р1 открывается всасывающий клапан. Цилиндр заполняется газом. Всасывание изображается на индикаторной диаграмме линией 4-1. При обратном движении поршня всасывающий клапан закрывается, и газ сжимается по линии 1-2. Давление в цилиндре увеличивается до тех пор, пока не станет больше p1. Нагнетательный клапан открывается, и газ выталкивается поршнем в сеть (линия 2 -3). Затем нагнетательный клапан закрывается, и все процессы повторяются. Рис. 1.36. Индикаторная диаграмма идеального поршневого компрессора Индикаторную диаграмму не следует смешивать с р,v -диаграммой, которая строится для постоянного количества вещества. В индикаторной диаграмме линии всасывания 4-1 и нагнетания 2-3 не изображают термодинамические процессы, так как состояние рабочего тела в них остается постоянным — меняется только его количество. На сжатие и перемещение 1 кг газа затрачивается работа (- lтех), которую производит двигатель, вращающий вал компрессора. Обозначим ее через lк(lк=-lтех). На индикаторной диаграмме lк изображается площадью 4-3-2-1. Техническая работа, затрачиваемая в компрессоре, зависит от характера процесса сжатия. Чтобы приблизить процесс сжатия к изотермическому, необходимо отводить от сжимаемого в компрессоре газа теплоту. Это достигается путем охлаждения наружной поверхности цилиндра водой, подаваемой в рубашку, образуемую полыми стенками цилиндра. Однако практически сжатие газа осуществляется по политропе с показателем n = 1,18 -1,2, поскольку достичь, значения n = 1 не удается. Считая газ идеальным, из уравнения политропы получаем , и Если обозначить расход газа в компрессоре через т, кг/с, то теоретическая мощность привода компрессора определится из уравнения Многоступенчатое сжатие. Для получения газа высокого давления применяют многоступенчатые компрессоры (рис. 1.37), в которых процесс сжатия осуществляется в нескольких последовательно соединенных цилиндрах с промежуточным охлаждением газа после каждого сжатия.
Рис. 1.37. Схема многоступенчатого компрессора: I - III— ступени сжатия; 1, 2 — промежуточные холодильники.
Индикаторная диаграмма трехступенчатого компрессора изображена на рис. 1.38.
Рис. 1.38. Индикаторная диаграмма трехступенчатого компрессора В первой ступени компрессора газ сжимается по политропе до давления рII, затем он поступает в промежуточный холодильник 1, где охлаждается до начальной температуры Т1. Сопротивление холодильника по воздушному тракту с целью экономии энергии, расходуемой на сжатие, делают небольшим. Это позволяет считать процесс охлаждения газа изобарным. После холодильника газ поступает во вторую ступень и сжимается по политропе до рIII, затем охлаждается до температуры Т1 в холодильнике 2 и поступает в цилиндр третьей ступени, где сжимается до давления р2. Если бы процесс сжатия осуществлялся по изотерме 1-3-5-7, то работа сжатия была бы минимальна. При сжатии в одноступенчатом компрессоре по линии 1-9 величина работы определялась бы площадью 0-1-9-8. Работа трехступенчатого компрессора определяется площадью 0-1-2-3-4-5-6-8. Заштрихованная площадь показывает уменьшение затрат, работы от применения трехступенчатого сжатия. Чем больше число ступеней сжатия и промежуточных охладителей, тем ближе процесс к наиболее экономичному - изотермическому, но тем сложнее и дороже конструкция компрессора. Поэтому вопрос о выборе числа ступеней, обеспечивающих требуемую величину р2, решается на основании технических и технико-экономических соображений. Процессы сжатия в реальном компрессоре характеризуются наличием внутренних потерь на трение, поэтому работа, затрачиваемая на сжатие газа, оказывается больше. Эффективность работы реального компрессора определяется относительным внутренним КПД, представляющим собой отношение работы, затраченной на привод идеального компрессора, к действительной. Для характеристики компрессоров, работающих без охлаждения, применяют адиабатный КПД где lад - работа при равновесном, адиабатном сжатии, вычисленная при n = k; lкд - работа, затраченная в реальном компрессоре при сжатии 1 кг газа. Для характеристики охлаждаемых компрессоров используют изотермический КПД где lиз - работа равновесного сжатия в изотермическом процессе, подсчитанная при n = 1.
Глава 2. Теплопередача
Дата добавления: 2014-01-06; Просмотров: 557; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |