КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вынужденные электромагнитные колебания
Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи. Электромагнитные колебания - взаимосвязанные колебания электрического и магнитного полей. Колебательный контур. Свободные электромагнитные колебания
Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.
В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC -контур (рис. 1).
Когда ключ K находится в положении 1, конденсатор заряжается до напряжения U. После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. Закон Ома для замкнутой RLC -цепи, не содержащей внешнего источника тока, записывается в виде
где – напряжение на конденсаторе, q – заряд конденсатора, – ток в цепи. В правой части этого соотношения стоит ЭДС самоиндукции катушки. Если в качестве переменной величины выбрать заряд конденсатора q (t), уравнение, описывающее свободные колебания в RLC -контуре, может быть приведено к следующему виду:
Рассмотрим сначала случай, когда в контуре нет потерь электромагнитной энергии (R = 0). Тогда
Здесь принято обозначение: Уравнение (*) описывает свободные колебания в LC -контуре в отсутствие затухания. По виду оно в точности совпадает с уравнением свободных колебаний груза на пружине в отсутствие сил трения. На рисунке приведены графики изменения заряда q (t) конденсатора и смещения x (t) груза от положения равновесия, а также графики тока J (t) и скорости груза υ (t) за один период колебаний.
Сравнение свободных колебаний груза на пружине и процессов в электрическом колебательном контуре позволяет сделать заключение об аналогии между электрическими и механическими величинами. Эти аналогии представлены в таблице 1.
В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону
Ток в цепи равен производной заряда по времени, его можно выразить Чтобы нагляднее выразить сдвиг фаз, перейдем от косинуса к синусу
Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний
Амплитуда q 0 и начальная фаза φ0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия. В частности, для процесса колебаний, который начнется в контуре (рис. 1) после переключения ключа K в положение 2, q 0 = U C, φ0 = 0. При свободных колебаниях происходит периодическое превращение электрической энергии W э, запасенной в конденсаторе, в магнитную энергию W м катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной: Все реальные контуры содержат электрическое сопротивление R. Процесс свободных колебаний в таком контуре уже не подчиняется гармоническому закону. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими(рис. 3).
Затухающие колебания в электрическом контуре аналогичны затухающим колебаниям груза на пружине при наличии вязкого трения, когда сила трения изменяется прямо пропорционально скорости тела: F тр = – βυ. Коэффициент β в этой формуле аналогичен сопротивлению R электрического контура. Уравнение свободных колебаний в контуре при наличии затухания имеет вид
Физическая величина δ = R / 2 L называется коэффициентом затухания. Решением этого дифференциального уравнения является функция
которая содержит множитель exp (–δ t), описывающий затухание колебаний. Скорость затухания зависит от электрического сопротивления R контура. Интервал времени в течение которого амплитуда колебаний уменьшается в e ≈ 2,7 раза, называется временем затухания. Добротности Q любой колебательной системы, способной совершать свободные колебания, может быть дано энергетическое определение:
Для RLC -контура добротность Q выражается формулой Добротность электрических контуров, применяемых в радиотехнике, обычно порядка нескольких десятков и даже сотен. Следует отметить, что собственная частота ω свободных колебаний в контуре с не очень высокой добротностью несколько меньше собственной частоты ω0 идеального контура с теми же значениями L и C. Но при Q ≥ (5÷10) этим различием можно пренебречь.
Последовательным колебательным контуром называется электрическая цепь, состоящая из резистора R, катушки L, конденсатора C. В реальном колебательном контуре колебания являются затухающими, поскольку такой контур всегда обладает сопротивлением. В связи с этим одной из важнейших задач в практическом использовании становится компенсация потерь электромагнитной энергии. Одним из способов решения данной задачи является включение последовательно с элементами контура переменной эдс. В этом случае потери энергии компенсируются поступающей электрической энергией, а колебания уже будут вынужденными, поскольку осуществляются за счет внешней периодической электродвижущей силы: . (1) Простейший последовательный колебательный контур представлен на рис. 1. Рис. 1. Схема последовательного колебательного контура
Так, сумма напряжений на отдельных элементах контура равна в каждый момент времени напряжению, приложенному извне: (2) Учитывая правило знаков, а также, используя закон самоиндукции, получим: Далее учитывая, что силу тока можно определить как , где q – заряд на конденсаторе, , можно написать: . где U0 – амплитуда напряжения. Получим дифференциальное уравнение второго порядка: где и – соответственно коэффициент затухания контура и собственная частота колебаний контура. Частное решение данного уравнения запишем в виде: (3) где – амплитудное значение заряда на конденсаторе, которое можно выразить как: , (3.1) Продифференцировав выражение (3) по времени, найдем выражение для колебаний силы тока в установившихся колебаниях: : (4) Чтобы найти максимальную силу тока, воспользуемся формулой (3.1), получим: . (5)
Дата добавления: 2014-01-06; Просмотров: 1577; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |