Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вынужденные колебания. Резонанс




Коэффициент затухания. Декремент и логарифмический декремент затухания.

Затухающие колебания. Уравнение затухающих колебаний.

Колебаниями называются повторяющиеся движения или изменения состояния.

Основные положения гемодинамики.

1. Движение крови по сосудам обусловлено разностью давления в начальном и конечном участках кровяного русла.

2. Объёмная скорость кровотока (объём крови протекающий через поперечное сечение сосудистого русла в единицу времени) вычисляется по формуле:

Q = (p2 - p1)/X, где X — периферическое сопротивление сосудистого русла, (p2 - p1) — разность давления в начале и в конце русла.

2. Линейная скорость кровотока вычисляется по формуле: V=Q/S Периферическое сопротивление сосуда X = 8 l h /(pR4), где l —

длина сосуда, R — его радиус, h — коэффициент вязкости. Выводится на основании аналогий законов Ома и Пуазейля (движение электричества и жидкости описываются общими соотношениями. Гидравлическое сопротивление в значительной степени зависит от радиуса сосудов. Отношение радиусов для различных участков сосудистого русла: Rаорт:Rар:Rкап =3000:500:1.

 

51. Незатухающие колебания. Уравнения незатухающих колебаний. (Ремезов. С.130 – 131).

Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.

Х = А соs (w0t +j0), где Х – значение физической величины в момент времени t; А – амплитуда колебаний (максимальное отклонение от положения равновесия); t - время; w0 – круговая частота колебаний; (w0t +j0) = j - фаза колебаний; j0 – начальная фаза колебаний.

Гармонические колебания при отсутствии сил трения являются незатухающими.

Затухающими называют колебания, амплитуда которых уменьшается со временем под действием сил трения.

Уравнение затухающих колебаний имеет вид:

Х = А0е -b tcos(wt + j0); где b - коэффициент затухания, который характеризует степень убывания колебаний.

На практике для характеристики затуханий используют такую характеристику как коэффициент затуханий b, который характеризует скорость затуханий, декремент затухания, который численно равен отношению предыдущей к последующей амплитуде колебаний A(t)/ A(t +T) и логарифмический декремент затуханий l, который находят из соотношения:

l= ln A(t)/ A(t +T) = ln А0е -b t/ А0е -b(t + T) = ln е b T = b T или: l = b T

Вынужденными называются колебания, которые возникают в системе при участии внешней силы, изменяющейся по периодическому закону.

Амплитуда вынужденных колебаний будет максимальной при некоторой определенной частоте вынуждающей силы, называемой резонансной. А само явление называют резонансом.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 557; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.