Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия и величины. Неотъемлемым свойством материи является движение.Общая количественная мера движения и взаимодействия всех видов материи-энергияЕ (от греч




 

Неотъемлемым свойством материи является движение.Общая количественная мера движения и взаимодействия всех видов материи- энергия Е (от греч. - действие, деятельность). Одним из фундаментальных законов природы является закон сохранения энергии:

Энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую в эквивалентных количествах.

В соответствии с различными видами движения материи рассматривают разные виды энергии (механическая, электромагнитная, химическая и т. п.). Размерность энергии в системе СИ - Дж (джоуль).

Термодинамическая система - конкретный объект термодинамического исследования, мысленно обособляемый от окружающей среды. Это сово­купность макроскопических тел, которые могут взаимодействовать друг с дру­гом и с внешней средой - обмениваться с ними энергией и веществом. Тер­модинамическая система состоит из столь большого числа структурных частиц, что её состояние можно характеризовать макроскопическими параметрами: плотностью, давлением, концентрацией веществ, температурой
и др.

Термодинамические системы (или, для краткости, просто системы) могут быть классифицированыпо различным признакам:

- по состоянию: равновесные и неравновесные;

- по взаимодействию с окружающей средой (или с другими системами): открытые (могут обмениваться со средой и энергией, и веществом), закрытые (могут обмениваться только энергией) и изолированные (не могут обмениваться ни веществом, ни энергией);

- по числу фаз: однофазные (гомогенные, однородные) и многофазные (гетерогенные, неоднородные);

- по числу компонентов (химических веществ, входящих в их состав): однокомпонентные и многокомпонентные.

Внутренняя энергия рассматриваемой системы U - сумма всех видов энергии движения и взаимодействия частиц (молекул, атомов, ионов, радикалов и др.), складывающих систему - кинетической энергии хаотического движения молекул относительно центра масс системы и потенциальной энергии взаимодействия молекул друг с другом. Составляющие внутренней энергии - поступательная U пост (энергия поступательного движения частиц, например молекул газов и жидкостей), вращательная U вр (энергия вращательного движения частиц, например, вращения молекул газов и жидкостей, атомов вокруг химических s-связей), колебательная U кол (энергия внутримолекулярного колебательного движения атомов и энергия колебательного движения частиц, находящихся в узлах кристаллической решётки), электронная U эл (энергия движения электронов в атомах и молекулах), ядерная энергия U я и др. В понятие внутренней энергии не входят кинетическая и потенциальная энергия системы в целом. Размерность СИ внутренней энергии Дж/моль или Дж/кг.

Абсолютное значение внутренней энергии не может быть вычислено с помощью уравнений термодинамики. Можно лишь измерить её изменение в том или ином процессе. Однако для термодинамического рассмотрения это оказывается достаточным.

Состояние системы - совокупность физических и химических свойств, характеризующих данную систему. Оно описывается параметрамисостояния - температурой Т, давлением р, объёмом V, концентрацией С и др. Каждому состоянию системы кроме определённого значения параметров отвечает также определённое значение некоторых величин, зависящих от параметров и называемых термодинамическими функциями. Если изменение термодинамической функции не зависит от пути процесса, а определяется только начальным и конечным состоянием, такая функция называется функцией состояния. Например, внутренняя энергия является функцией состояния, поскольку её изменение в каком-либо процессе может быть вычислено как разность между конечным и начальным значениями:

DU = U2 - U1.

К функциям состояния относятся характеристические функции, совокуп­ность которых может достаточно полно охарактеризовать состояние системы (внутренняя энергия, энтальпия, энтропия, энергия Гиббса и т. п.).

Термодинамический процесс - это любое изменение в системе, сопровождающееся изменением параметров. Движущей силой процессов являются факторы - неравномерность значения тех или иных параметров (например, температурный фактор, обусловленный различными значениями температуры в разных частях системы). Процесс, идущий при постоянном давлении, называется изобарным, при постоянном объёме - изохорным, при постоянной температуре - изотермическим, при постоянном количестве теплоты - адиабатическим.

Теплообмен - самопроизвольный необратимый переход энергии в форме теплоты от тела с большей температурой к телу с меньшей температурой при их непосредственном контакте. Движущая сила теплообмена - разность температур тел, участвующих в теплообмене. Теплота - форма беспорядочного (“теплового”) движения образующих тело частиц (молекул, атомов и др.). Количественной мерой энергии, передаваемой при теплообмене, служит количество теплоты Q. Размерность СИ количества теплоты - Дж. Наряду с джоулем часто используется и внесистемная единица теплоты - калория (кал). 1 кал = 4,184 Дж. Часто вместо термина “количество теплоты” в качестве синонима употребляется выражение “теплота”.

Работа - форма передачи энергии от одной системы к другой, связанная с действием против внешних сил и осуществляемая при упорядоченном, направленном перемещении системы или отдельных её составных частей. Количественной мерой энергии, передаваемой при работе, служит количество работы w. Размерность СИ работы - Дж. Вместо термина “количество работы” часто как синоним употребляется выражение “работа”.

Количество работы и количество теплоты в общем случае не являются функциями состояния, так как их значение определяется видом процесса, в результате которого система изменила свое состояние. Исключениями являются работа расширения и тепловой эффект химической реакции.

Сам термин “термодинамика” происходит от греческих слов thermos (теплота) и dynamos (работа), так как эта наука основана на изучении баланса теплоты и работы в системах при различных процессах.

Теплоёмкость С - отношение количества теплоты, поглощаемой телом при нагревании, к изменению температуры, вызываемому этим поглощением. Различают истиннуюи среднюю, молярную и удельную, изобарную и изохорную теплоёмкость.

Истинная теплоёмкость - отношение бесконечно малого количества теплоты к бесконечно малому изменению температуры:

Сист = dQ / dT

средняя теплоёмкость - отношение макроскопического количества теплоты к изменению температуры в макроскопическом процессе:

С = D Q /D T.

По физическому смыслу средняя теплоёмкость представляет собой количество теплоты, необходимое для нагревания тела на 1 градус (1оС или 1К).

Теплоёмкость единицы массы вещества - удельная теплоёмкость (размерность СИ - Дж/кг·К). Теплоёмкость моля вещества - молярная (мольная) теплоёмкость (размерность СИ - Дж/моль·К). Теплоёмкость, измеренная при постоянном объёме - изохорная теплоёмкость СV; теплоёмкость при постоянном давлении - изобарная тепло­ём­кость СP. Между СP и СV существует соотношение (для одного моля идеального газа):

СP = СV + R

где R - универсальная газовая постоянная.

Температура Т - степень нагретости тела, определяемая распределением молекул и других частиц по скоростям кинетического движения и степенью заселённости высших энергетических уровней молекул. В термодинамике принято использовать абсолютную температуру, отсчитываемую от абсолютного нуля, которая всегда положительна. Размерность СИ абсолютной температуры – К (кельвин), численно равный градусу шкалы Цельсия.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 443; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.