КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Основное уравнение теории удара
Пусть дана МТ массы m, которая движется под действием обычной (неударной) силы . В момент , когда рассматриваемая МТ имеет скорость – скорость до удара, на нее начинает действовать ударная сила , действие которой прекращается в момент . Определим движение МТ под действием сил и за время удара . Применяя теорему об изменении количества движения МТ (1.15), получим: , где – скорость точки в момент после удара. Рассмотрим отдельно каждый член правой части этого равенства. По теореме о среднем значении определенного интеграла можно написать: , где и есть средние значения сил и в некоторый промежуток времени. При этом является конечной величиной; ударная сила за время удара достигает весьма большой величины (порядка ). Поэтому произведение будет пренебрежимо мало по сравнению с произведением , являющимся величиной конечной. Импульс обычной (неударной) силы за время удара t будет по сравнению с импульсом ударной силы очень мал и им можно пренебречь.
. Окончательно получим:
. (8.1)
Основное уравнение теории удара: Изменение количества движения МТ за время удара равно действующему на эту МТ ударному импульсу. Проектируя векторное равенство (8.1) на координатные оси, получим три следующих уравнения:
(8.2)
Итак, изменение проекции количества движения материальной точки на какую-нибудь неподвижную ось за время удара равно проекции на ту же ось действующего на эту точку ударного импульса. Уравнение (8.1) – основное уравнение теории удара, которое играет такую же роль в явлении удара, как второй закон динамики при изучении движений под действием обычных сил. Определим перемещение МТ за время удара. Так как , где – радиус-вектор, определяющий положение данной МТ относительно некоторой системы отсчета, то уравнение (8.1) можно записать следующим образом: Проинтегрировав это равенство в пределах от до , найдем: , Таким образом, перемещением МТ за время удара можно пренебречь, считая, что за время удара эта МТ практически остается неподвижной, то есть не успевает переместиться.
Дата добавления: 2014-01-06; Просмотров: 296; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |