КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Магнитное поле
c:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Fwd_h.gifc:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Bwd_h.gif1.21. Самоиндукция. Энергия магнитного поля window.top.document.title = "1.21. Самоиндукция. Энергия магнитного поля"; Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:
Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб:
В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)
где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида. Магнитный поток, пронизывающий все N витков соленоида, равен
Следовательно, индуктивность соленоида равна
где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с магнитной проницаемостью μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:
ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней. Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.
Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I2RΔt. Ток в цепи равен Выражение для ΔQ можно записать в виде
В этом выражении ΔI < 0; ток в цепи постепенно убывает от первоначального значения I0 до нуля. Полное количество теплоты, выделившейся в цепи, можно получить, выполнив операцию интегрирования в пределах от I0 до 0. Это дает Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.
Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна
Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить: где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина
равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей. Глава 2. Электромагнитные колебания и волны c:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Fwd_h.gifc:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Bwd_h.gif2.5. Трансформаторы. Передача электрической энергии window.top.document.title = "2.5. Трансформаторы. Передача электрической энергии"; Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении электромагнитной индукции. Простейший трансформатор состоит из сердечника замкнутой формы из магнитомягкого материала, на который намотаны две обмотки: первичная и вторичная (рис. 2.5.1).
Первичная обмотка подсоединяется к источнику переменного тока с ЭДС e1(t), поэтому в ней возникает ток J1(t), создающий в сердечнике трансформатора переменный магнитный поток Φ, который практически без рассеяния циркулирует по замкнутому магнитному сердечнику и, следовательно, пронизывает все витки первичной и вторичной обмоток. В режиме холостого хода, то есть при разомкнутой цепи вторичной обмотки, ток в первичной обмотке весьма мал из-за большого индуктивного сопротивления обмотки. В этом режиме трансформатор потребляет небольшую мощность. Ситуация резко изменяется, когда в цепь вторичной обмотки включается сопротивление нагрузки Rн, и в ней возникает переменный ток J2(t). Теперь полный магнитный поток Φ в сердечнике создается обоими токами. Но согласно правилу Ленца магнитный поток Φ2, создаваемый индуцированным во вторичной обмотке током J2, направлен навстречу потоку Φ1, создаваемому током J1 в первичной обмотке: Φ = Φ1 – Φ2. Отсюда следует, что токи J1 и J2 изменяются в противофазе, то есть имеют фазовый сдвиг, равный 180°. Другой важный вывод состоит в том, что ток J1 в первичной обмотке в режиме нагрузки значительно больше тока холостого хода. Это следует из того, что полный магнитный поток Φ в сердечнике должен быть в режиме нагрузки таким же, как и в режиме холостого хода, так как напряжение u1 на первичной обмотке в обоих случаях одно и то же. Это напряжение равно ЭДС источника e1 переменного тока. Так как магнитные потоки, пронизывающие обмотки, пропорциональны числу n1 и n2 витков в них, можно записать для первичной обмотки: для вторичной обмотки: Следовательно,
Знак минус означает, что напряжения u1 и u2 находятся в противофазе, также как и токи J1 и J2 в обмотках. Поэтому фазовый сдвиг φ1 между напряжением u1 и током J1 в первичной обмотке равен фазовому сдвигу φ2 между напряжением u2 и током J2 во вторичной обмотке. Если нагрузкой вторичной обмотки является активное сопротивление Rн, то φ1 = φ2 = 0. Для амплитудных значений напряжений на обмотках можно записать:
Коэффициент K = n2 / n1 есть коэффициент трансформации. При K > 0 трансформатор называется повышающим, при K < 0 – понижающим. Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике. Для уменьшения токов Фуко сердечники транформатора изготавливают обычно из тонких стальных листов, изолированных друг от друга. Существует еще один механизм потерь энергии, связанный с гистерезисными явлениями в сердечнике. При циклическом перемагничивании ферромагнитных материалов возникают потери электромагнитной энергии, прямо пропорциональные площади петли гистерезиса. У хороших современных трансформаторов потери энергии при нагрузках, близких к номинальным, не превышает 1–2 %, поэтому к ним приближенно применима теория идеального трансформатора. Если пренебречь потерями энергии, то мощность P1, потребляемая идеальным трансформатором от источника переменного тока, равна мощности P2, передаваемой нагрузке.
Отсюда следует, что то есть токи в обмотках обратно пропорциональны числу витков. Принимая во внимание, что U2 = RнI2, можно получить следующее соотношение
Отношение Rэкв = U1 / I1 можно рассматривать как эквивалентное активное сопротивление первичной цепи, когда вторичная обмотка нагружена на сопротивление Rн. Таким образом, трансформатор «трансформирует» не только напряжения и токи, но и сопротивления. В современной технике нашли широкое применение трансформаторы различных конструкций. В радиотехнических устройствах используются небольшие, маломощные трансформаторы, имеющие обычно несколько обмоток (понижающих или повышающих напряжение источника переменного тока). В электротехнике часто применяются так называемые трехфазные трансформаторы, предназначенные для одновременного повышения или понижения трех напряжений, сдвинутых по фазе относительно друг друга на углы 120°. Мощные трехфазные трансформаторы используются в линиях передач электроэнергии на большие расстояния. Передача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой. Для уменьшения потерь на нагревания проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется трехфазный ток частотой 50 Гц. На рис. 2.5.2 представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии. Следует отметить, что при повышении напряжения в линиях передачи увеличиваются утечки энергии через воздух. В сырую погоду вблизи проводов линии может возникнуть ток называетмый коронный разряд, который можно обнаружить по характерному потрескиванию. Коэффициент полезного действия линии передач не превышает 90 %.
Дата добавления: 2014-01-06; Просмотров: 582; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |