КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тепловые процессы в атмосфере
К климатообразующим процессам относятся теплооборот, влагооборот и циркуляция атмосферы. Теплооборот обеспечивает тепловой режим атмосферы и зависит от радиационного баланса, т.е. притоков теплоты, приходящих на земную поверхность (в форме лучистой энергии) и уходящих от нее (лучистая энергия, поглощенная Землей, преобразуется в тепловую). Солнечная радиация – поток электромагнитного излучения, поступающий от Солнца. На верхней границе атмосферы интенсивность (плотность потока) солнечной радиации равна 8,3 Дж/(см2/мин). Количество теплоты, которое излучает 1 см2 черной поверхности в 1 мин при перпендикулярном падении солнечных лучей, называется солнечной постоянной (1,98 кал/см2/мин). Солнечная постоянная, вопреки своему названию, не остается постоянной. Она изменяется в связи с изменением расстояния Солнце – Земля в процессе движения Земли по орбите. Количество солнечной радиации, получаемое Землей, зависит от: 1) расстояния между Землей и Солнцем (ближе всего к Солнцу Земля в начале января, дальше всего в начале июля; разница между двумя этими расстояниями – 5 млн. км, вследствие чего, Земля, в первом случае получает на 3,4% больше, а во втором на 3,5% меньше радиации, чем при среднем расстоянии от Земли до Солнца: в начале апреля и в начале октября); 2) угла падения солнечных лучей на земную поверхность, зависящего в свою очередь от географической широты, высоты солнца над горизонтом (меняющейся в течение суток и по временам года), характера рельефа земной поверхности; 3) преобразования лучистой энергии в атмосфере (рассеяние, поглощение, отражение обратно в мировое пространство) и на поверхности земли. Среднее альбедо Земли – 43%. Поглощается около 17% всей радиации; озон, кислород, азот поглощают в основном коротковолновые ультрафиолетовые лучи, водяной пар и углекислый газ – длинноволновую ифракрасную радиацию. Атмосфера рассеивает 28% радиации; к земной поверхности поступает 21%, в космос уходит 7%. Та часть радиации, которая поступает к земной поверхности от всего небесного свода, называется рассеянной радиацией. Сущность рассеяния заключается в том, что частица, поглощая электромагнитные волны, сама становится источником излучения света и излучает те же волны, которые на нее падают. Молекулы воздуха очень малы, по размерам сопоставимы с длиной волн голубой части спектра. В чистом воздухе преобладает молекулярное рассеивание, следовательно, цвет неба – голубой. При запыленном воздухе цвет неба становится белесым. Цвет неба зависит от содержания примесей в атмосфере. При большом содержании водяного пара, рассеивающего красные лучи небо приобретает красноватый оттенок. С рассеянной радиацией связаны явления сумерек, белых ночей, т.к. после захода Солнца за горизонт верхние слои атмосферы еще продолжают освещаться. Верхняя граница облаков отражает около 24% радиации. Следовательно, к земной поверхности в виде потока лучей подходит около 31% всей солнечной радиации, поступившей на верхнюю границу атмосферы, она называется прямой радиацией. Сумма прямой и рассеянной радиации (52%) называется суммарной радиацией. Соотношение между прямой и рассеянной радиацией меняется в зависимости от облачности, запыленности атмосферы и высоты Солнца. Распределение суммарной солнечной радиации по земной поверхности зонально. Наибольшая суммарная солнечная радиация 840-920 кДж/см2 в год наблюдается в тропических широтах Северного полушария (СП), что объясняется небольшой облачностью и большой прозрачностью воздуха. На экваторе суммарная радиация снижается до 580-670 кДж/см2в год из-за большой облачности и уменьшения прозрачности из-за большой влажности. В умеренных широтах величина суммарной радиации составляет 330-500 кДж/см2 в год, в полярных широтах – 250 кДж/см2 в год, причем в Антарктиде из-за большой высоты материка и небольшой влажности воздуха она немного больше. Суммарная солнечная радиация, поступившая на земную поверхность, частично отражается обратно. Отношение отраженной радиации к суммарной, выраженное в процентах, называется альбедо. Альбедо характеризует отражательную способность поверхности и зависит от ее цвета, влажности и других свойств. Наибольшей отражательной способностью обладает свежевыпавший снег – до 90%. Альбедо песков 30-35%, травы – 20%, лиственного леса – 16-27%, хвойного – 6-19%; сухой чернозем имеет альбедо 14%, влажный – 8%. Альбедо Земли как планеты принимают равным 35%. Поглощая радиацию, Земля сама становится источником излучения. Тепловое излучение Земли – земная радиация – является длинноволновым, т.к. длина волны зависит от температуры: чем выше температура излучающего тела, тем короче длина волны испускаемых им лучей. Излучение земной поверхности нагревает атмосферу и она сама начинает излучать радиацию в мировое пространство (встречное излучение атмосферы) и к земной поверхности. Встречное излучение атмосферы тоже длинноволновое. В атмосфере встречаются два потока длинноволновой радиации – излучение поверхности (земная радиация) и излучение атмосферы. Разность между ними, определяющая фактическую потерю теплоты земной поверхностью, называется эффективным излучением, оно направлено в Космос, т.к. земное излучение больше. Эффективное излучение больше днем и летом, т.к. зависит от нагрева поверхности. Эффективное излучение зависит от влажности воздуха: чем больше в воздухе водяных паров или капелек воды, тем излучение меньше (поэтому зимой в пасмурную погоду всегда теплее, чем в ясную). В целом для Земли эффективное излучение равно 190 кДж/см2 в год (наибольшее в тропических пустынях – 380, наименьшее в полярных широтах – 85 кДж/см2 в год). Земля одновременно получает радиацию и отдает ее. Разность между получаемой и расходуемой радиацией называется радиационным балансом, или остаточной радиацией. Приход радиационного баланса поверхности составляет суммарная радиация (Q) и встречное излучение атмосферы. Расход – отраженная радиация (Rk) и земное излучение. Разность между земным излучением и встречным излучением атмосферы – эффективное излучение (Еэф) имеет знак минус и является частью расхода в радиационном балансе: Rб = Q - Eэф - Rk
Радиационный баланс распределяется зонально: уменьшается от экватора к полюсам. Наибольший радиационный баланс свойственен экваториальным широтам и составляет 330-420 кДж/см2 в год, в тропических широтах он снижается до 250-290 кДж/см2 в год (объясняется возрастанием эффективного излучения), в умеренных широтах радиационный баланс уменьшается до 210-85 кДж/см2 в год, в полярных широтах его величина приближается к нулю. Общая особенность радиационного баланса в том, что над океанами на всех широтах радиационный баланс выше на 40-85 кДж/см2, т.к. альбедо воды и эффективное излучение океана меньше. Приходную часть радиационного баланса атмосферы (Rб) составляют эффективное излучение (Еэф) и поглощенная солнечная радиация (Rп), расходная часть определяется атмосферной радиацией, уходящей в космос (Еа): -Rб = Еэф - Еа + Rп
Радиационный баланс атмосферы отрицательный, а поверхности – положительный. Суммарный радиационный баланс атмосферы и земной поверхности равен нулю, т.е. Земля находится в состоянии лучистого равновесия. Тепловой баланс – алгебраическая сумма потоков теплоты, приходящих на земную поверхность в виде радиационного баланса и уходящих от нее. Он складывается из теплового баланса поверхности и атмосферы. В приходной части теплового баланса земной поверхности стоит радиационный баланс, в расходной – затраты теплоты на испарение, на нагрев атмосферы от Земли, на нагрев почв. Расходуется теплота также на фотосинтез, почвообразование, но эти затраты не превышают 1%. Следует отметить, что над океанами больше затраты теплоты на испарение, в тропических широтах – на нагрев атмосферы. В тепловом балансе атмосферы приходную часть составляет теплота, выделившаяся при конденсации водяных паров, и переданная от поверхности в атмосферу; расход складывается из отрицательного радиационного баланса. Тепловой баланс земной поверхности и атмосферы равен нулю, т.е. Земля находится в состоянии теплового равновесия. Тепловой режим земной поверхности. Непосредственно солнечными лучами нагревается земная поверхность, а уже от нее – атмосфера. Поверхность, получающая и отдающая теплоту, называется деятельной поверхностью. В температурном режиме поверхности выделяется суточный и годовой ход температур. Суточный ход температур поверхности – изменение температуры поверхности в течение суток. Суточный ход температур поверхности суши (сухой и лишенной растительности) характеризуется одним максимумом около 13 ч и одним минимумом – перед восходом Солнца. Дневные максимумы температуры поверхности суши могут достигать 800 С в субтропиках и около 600 С в умеренных широтах. Разница между максимальной и минимальной суточной температурой поверхности называется суточной амплитудой температуры. Суточная амплитуда температуры может летом достигать 400 С, зимой амплитуда суточных температур наименьшая – до 100 С. Годовой ход температуры поверхности – изменение среднемесячной температуры поверхности в течение года, обусловлен ходом солнечной радиации и зависит от широты места. В умеренных широтах максимум температур поверхности суши наблюдается в июле, минимум – в январе; на океане максимумы и минимумы запаздывают на месяц. Годовая амплитуда температур поверхности равна разнице между максимальными и минимальными среднемесячными температурами; возрастает с увеличением широты места, что объясняется возрастанием колебаний величины солнечной радиации. Наибольших значений годовая амплитуда температур достигает на континентах; на океанах и морских берегах значительно меньше. Самая маленькая годовая амплитуда температур отмечается в экваториальных широтах (2-30), самая большая – в субарктических широтах на материках (более 600). Тепловой режим атмосферы. Атмосферный воздух незначительно нагревается непосредственно солнечными лучами. Т.к. воздушная оболочка свободно пропускает солнечные лучи. Атмосфера нагревается от подстилающей поверхности. Теплота в атмосферу передается конвекцией, адвекцией и конденсацией водяного пара. Слои воздуха, нагреваясь от почвы, становятся более легкими и поднимаются вверх, а более холодный, следовательно, более тяжелый воздух опускается вниз. В результате тепловой конвекции идет прогревание высоких слоев воздуха. Второй процесс передачи теплоты – адвекция – горизонтальный перенос воздуха. Роль адвекции заключается в передаче теплоты из низких в высокие широты, в зимний сезон тепло передается от океанов к материкам. Конденсация водяного пара – важный процесс, осуществляющий передачу теплоты высоким слоям атмосферы – при испарении теплота забирается от испаряющей поверхности, при конденсации в атмосфере эта теплота выделяется. С высотой температура убывает. Изменение температуры воздуха на единицу расстояния называется вертикальным температурным градиентом, в среднем он равен 0,60 на 100 м. Вместе с тем, ход этого убывания в разных слоях тропосферы разный: 0,3-0,40 до высоты 1,5 км; 0,5-0,6 – между высотами 1,5-6 км; 0,65-0,75 – от 6 до 9 км и 0,5-0,2 – от 9 до 12 км. В приземном слое (толщиной 2 м) градиенты, при пересчете на 100 м, исчисляются сотнями градусов. В поднимающемся воздухе температура изменяется адиабатически. Адиабатический процесс – процесс изменения температуры воздуха при его вертикальном движении без теплообмена с окружающей средой (в одной массе, без обмена теплом с другими средами). В описанном распределении температуры по вертикали нередко наблюдаются исключения. Бывает, что верхние слои воздуха теплее нижних, прилегающих к земле. Явление это называется температурной инверсией (увеличение температуры с высотой). Чаще всего инверсия является следствием сильного охлаждения приземного слоя воздуха, вызванного сильным охлаждением земной поверхности в ясные тихие ночи, преимущественно зимой. При пересеченном рельефе холодные массы воздуха медленно стекают вдоль склонов и застаиваются в котловинах, впадинах и т.п. Инверсии могут образовываться и при движении воздушных масс из теплых областей в холодные, так как при натекании подогретого воздуха на холодную подстилающую поверхность его нижние слои заметно охлаждаются (инверсия сжатия).
Дата добавления: 2014-01-06; Просмотров: 826; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |