Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сложение и вычитание

Обе операции выполняются по сходным алгоритмам.

X = 2mx * sign X.x1x2...xnY = 2my * sign Y.y1y2...ynZ = X ± Y = 2max(mx,my).sign Z.z1z2...zn

Операция выполняется следующим образом:

  1. Находится разность порядков: mx – my = Δ
  2. Производится выравнивание порядков, при этом если разность порядков положительна, то в качестве порядка результата берётся mx, а мантисса My сдвигается вправо на |mx– my| разрядов; еcли разрядность порядков отрицательна, то денормализуется мантисса Mx.
  3. Производится алгебраическое суммирование мантисс слагаемых.
  4. Выполняется нормализация влево или вправо на соответствующее число разрядов с необходимым исправлением порядка.

Пример:

порядок мантисса[mx]пк = 0.11 [Mx]пк = 0.1010[my]пк = 0.10 [My]пк = 0.1110Находим разность порядков: +00.11 = [mx]мок 11.01 = [-my]мок 1| 00.00 |_ _1 00.01 = [Δ]мок - разность порядковТак как m x > my, то: +00.1010 = [Mx]мок 00.0111 = [My]мок * 2-1[Z]мок = 01.0001 – переполнение 2-1 * [Z]мок = 00.1000 – нормализация max(mx,my) = [mx]мок = +00.11 [1]мок = 00.01 [mx]мок = 01.00 – переполнение порядкаZ = ∞

При выполнении операции сложения возможны следующие специфические случаи, называемые блокировками:

а) При определении разности порядков может оказаться, что необходимо мантиссу одного из чисел сдвигать на величину, большую, чем число разрядов в разрядной сетке. В этом случае, естественно, такое число может быть воспринято как нуль, а операция дальнейшего сложения может блокироваться, то есть не выполняться.

В качестве результата берётся максимальное число.

Пример:

[mx]ок = 0.101 [Mx]ок = 0.10111101[my]ок = 1.001 [My]ок = 0.10000001

Разность порядков:

+00.101 = [mx]мок 00.110 = [-my]мок

[Δ]мок = 01.011 – то есть это число 11 10, а в разрядной сетке мантиссы только 8 разрядов.

Поэтому операция блокируется, а результатом является число:

[mx] = 0.101 [Mx] = 0.10111101

Аналогичный случай может быть, когда разность порядков – отрицательна (отрицательное переполнение). В этом случае операция также блокируется, а результатом будет число с максимальным порядком.

Пример:

[mx]ок = 1.010 [Mx]ок = 1.10101011[my]ок = 0.110 [My]ок = 1.11111111

Разность порядков:

+ 11.010 = [mx]мок 11.001 = [-my]мок _______+1| 10.011 1 _______ 10.100 = [Δ]мок

То есть разность порядков меньше (-8).

Операция блокируется, а результатом будет число:

[my]ок = 0.110 [My]ок = 1.11111111
<== предыдущая лекция | следующая лекция ==>
Деление в дополнительном (обратном) кодах со сдвигом и автоматическим восстановлением остатка | Десятичные двоично-кодированные системы
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 307; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.