Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства арифметической средней




1. Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю.

Доказательство:

Для взвешенной средней справедливо следующее свойство: сумма взвешенных отклонений равны нулю. Попробуйте доказать это свойство самостоятельно.

2. Если каждое индивидуальное значение признака умножить или разделить на постоянное число, то и средняя величина увеличиться или уменьшиться во столько же раз.

Доказательство:

 

 

Вследствие этого свойства индивидуальные значения признака можно сократить в с раз, произвести расчет средней и результат умножить на с.

3. Если к каждому индивидуальному значению признака прибавить или из каждого индивидуального признака вычесть постоянное число, то средняя величина возрасте или уменьшится на это же число.

Доказательство:

 

Это свойство полезно использовать при расчете средней величины из многозначных и слабоварьирующихся значений признака, например роста группы лиц: х1 = 179 см, х2 = 183 см, х3 = 171 см, х4 = 180 см, х5 = 169 см. Для вычисления среднего роста из каждого значения вычитаем 170 см и находим среднюю из остатков: (9 + 13 + 1 - 1): 5 = 6,4. Средний рост = 6,4 + 170 = 176,4 см.

4. Если веса средней взвешенной умножить или разделить на постоянное число, то средняя величина не изменится.

Доказательство:

 

Используя это свойство, при расчетах следует сокращать все веса на их общий множитель или выражать многозначные числа весов в более крупных единицах измерения.

5. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа.

Доказательство:

(везде сумма i =1 до n)

Составим сумму квадратов отклонений от переменной а:

Чтобы найти экстремум этой функции, нужно её производную по а приравнять к нулю:

Отсюда имеем:

Таким образом, экстремум функции достигается в при а=. Так как мы видим, что наша функция - это квадратичная функция и представляет собой параболу, то ясно, что максимум она иметь не может. Следовательно, данный экстремум является минимумом.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 828; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.