![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теоремы Бернулли и Чебышёва
Теорема Бернулли. Пусть Другими словами, теорема Бернулли утверждает, что частость
Доказательство. Учитывая, что вероятность произвольного события не превосходит 1, из неравенства Бернулли следует Переходя к пределу при Крайние левый и правый пределы этого двойного неравенства равны 1. Таким образом, имеем что равносильно утверждению теоремы Бернулли.
Теорема Бернулли утверждает, что, если за значение вероятности Теорема Чебышёва. Пусть случайные величины Другими словами, теорема Чебышёва утверждает, что среднее арифметическое некоторого числа случайных величин, имеющих одинаковое математическое ожидание, сходится по вероятности к их общему математическому ожиданию. Говоря о приложениях теоремы Чебышёва, отметим, в первую очередь, следующую возможность. Если за значение некоторого неизвестного параметра а взять среднее арифметическое результатов Теоремы Бернулли и Чебышёва являются явными реализациями так называемого закона больших чисел, утверждающего, что при проведении достаточно большого числа испытаний погрешности отдельных испытаний взаимно погашают друг друга (тем самым среднее арифметическое независимых случайных величин – результатов этих испытаний – стремится к постоянной величине при неограниченном увеличении числа испытаний). Домашнее задание:6.10, 6.11, 6.17, 6.19, 6.22.
Дата добавления: 2014-01-06; Просмотров: 386; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |