КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общие сведения. Антагонистические игры
Антагонистические игры. Опр.: Игра называется антагонистической, если выполняются условия и . Другими словами, антагонистическая игра — это игра двух лиц с нулевой суммой. Обозначив множество стратегий первого игрока через X , а множество стратегий второго игрока через Y , антагонистическую игру можно описать следующим образом: , где — выигрыш первого игрока или проигрыш второго. Как отмечалось выше, целью исследования является нахождение ситуации равновесия (равновесия в прямом конфликте). Поэтому поведение игроков диктуется: 1-ый игрок старается за счет выбора стратегии максимизировать свой выигрыш (); 2-ой игрок за счет выбора стратегии старается минимизировать проигрыш (). Суть этого конфликта состоит в том, что каждый из игроков обладает возможностью менять только свою стратегию. Преодоление этой трудности, другими словами определение наиболее рационального способа поведения игроков в этой игре, это и есть игровая модель принятия решений. Если в антагонистической игре двух лиц множества X и Y конечны, то игра называется матричной. Название объясняется тем, что игру можно представить таким образом: элементы множеств X и Y занумеровываются, например: и . Ситуацией в этом случае является пара , , . Выигрыш первого игрока рассматривается как элемент матрицы А размером Эта матрица называется матрицей игры. Игра протекает следующим образом: игроки одновременно и независимо друг от друга называют номер строки (первый игрок) и номер столбца (второй игрок). Элемент матрицы, расположенный на пересечении выбранных строки и столбца, и есть выигрыш первого игрока и соответственно проигрыш второго. Рассмотрим матричную антагонистическую игру с матрицей выигрышей: Первый (максимизирующий) игрок выбирает строку. Второй (минимизирующий) игрок выбирает столбец, на их пересечении записан выигрыш первого игрока. Каждый игрок стремится к увеличению своего выигрыша. Но его выигрыш зависит не только от его выбора, но и от того, какая стратегия будет выбрана противником. Поэтому, стремясь получить максимальный выигрыш, каждый игрок должен учитывать поведение противника. В теории игр выбор оптимальной стратегии предлагается осуществлять, основываясь на принципе минимакса (максимина), который иногда называют «принципом осторожной игры против умного партнера». Вот рассуждения первого игрока, основанные на указанном принципе. «Пусть я выбрал i-ую строку. Тогда самое меньшее, на что я могу рассчитывать, будет . Поэтому естественно выбрать такую строку, чтобы этот минимальный выигрыш был наибольшим: . Таким образом, я могу гарантировать, что меньше, чем , мой выигрыш быть не может». Эта величина называется нижним значением игры и обозначается: . Номер строки i, который выбрал первый игрок, называется максиминной стратегией первого игрока. Рассуждения второго игрока, основанные на принципе минимакса. «Пусть я выбрал j-ый столбец. Тогда самое большее, что я могу проиграть — это . Поэтому естественно выбрать такой столбец, чтобы этот максимальный проигрыш был наименьшим, т.е. чтобы . Таким образом, я мог бы гарантировать, что меньше, чем , мой выигрыш быть не может». Величина называется верхним значением игры и обозначается: . Значение j называется минимаксной стратегией 2-ого игрока. Теорема: Если - антагонистическая игра, то для любого , имеет место: Доказательство: Так как по определению, то, очевидно, . Так как , то . Эти неравенства очевидны для любых x, y, в том числе и для тех, которые обеспечивают верхнюю и нижнюю цены игры: . Таким образом, . Теорема доказана. Пример. Имеется следующая платежная матрица A(x) B(y) Нижняя цена игры равна -3, верхняя цена игры равна 4, максиминная стратегия первого игрока есть , минимаксная стратегия второго игрока есть . Если нижняя цена игры равна верхней цене игры, то игра называется игрой с cедловой точкой. Пусть , тогда величину с называют ценой игры, а стратегии игроков, обеспечивающие результат с, — оптимальными стратегиями. Клетку матрицы, определяющую величину с, называют седловой точкой, так как значение с является одновременно минимальным элементом строки и максимальным элементом столбца, на пересечении которых стоит эта величина. Любая седловая точка является искомой точкой равновесия в игре, так как любое отклонение игроков от оптимальной стратегии приведет к уменьшению выигрыша первого, либо к увеличению проигрыша второго. — цена игры. Если , то игра является несправедливой, т.к один игрок точно проигрывает. Если , то игра справедливая. Для того чтобы сделать несправедливую игру справедливой, первый игрок должен уплатить второму игроку величину с перед началом каждой новой партии.
Дата добавления: 2014-01-06; Просмотров: 376; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |