КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Позиционные системы счисления
Системы программирования Даже при наличии десятков тысяч программ для IBM PC пользователям может потребоваться что-то такое, чего не делают (или делают, но не так) имеющиеся программы. В этих случаях следует использовать системы программирования, т.е. системы для разработки новых программ. Эти системы обычно включают компилятор, осуществляющий преобразование программ на языке программирования в программу в машинных кодах, или интерпретатор, осуществляющий непосредственное выполнение программы на языке программирования высокого уровня, редактор текстов программ, библиотеки полезных подпрограмм, отладчики, а иногда и различные вспомогательные программы. Для популярных языков программирования IBM PC-совместимых компьютерах (Си, Си++, Паскаль, Бейсик, Фортран и др.) имеется множество систем программирования, позволяющих создавать программы, работающие в среде DOS, Windows, Windows 95. Windows NT и др.
Тема 6: Системы счисления. Информация в ЭВМ кодируется, как правило, в двоичной или в двоично-десятичной системе счисления. Система счисления – это способ наименования и изображения чисел с помощью символов, имеющих определенные количественные значения. В зависимости от способа изображения чисел системы счисления делятся на позиционные и непозиционные. В позиционной системе счисления количественное значение каждой цифры зависит от ее места (позиции) в числе. В непозиционной системе счисления цифры не меняют своего количественного значения при изменении их расположения в числе. (римская система счисления). Для изображения чисел в настоящее время используются в основном позиционные системы счисления. Привычной для всех является десятеричная система счисления. В этой системе для записи всех числе используются только десять различных знаков (цифр): 0,1,2,..,9. Десятеричная система счисления основана на том, что десять единиц каждого разряда объединяются в одну единицу соседнего старшего разряда. Таким образом, каждый разряд имеет вес, равный степени 10. например, в записи числа 343.32 цифра 3 повторена 3 раза, при этом самая левая цифра 3 означает количество сотен (ее вес равен 102); цифра 3, стоящая перед точкой означает количество единиц (ее вес равен 100) и самая правая цифра 3 – количество десятых долей единицы (ее вес равен 10-1), так что последовательность цифр 343, 32 представляет собой сокращенную запись выражения: 3*102+4*101+3*100+3*10-1+2*10-2 Десятичная запись любого числа X в виде последовательности цифр: anan-1…a1a0a-1…a-m… основана на представлении этого числа в виде полинома: X=an*10n+an-1*10n-1+…+a1*101*a0*100+a-1*10-1+…+a-m*10-m (1) Где каждый коэффициент an может быть одним из чисел, для обозначения которых введены специальные знаки. Число K единиц какого-либо разряда, объединяемых в единицу более старшего разряда, называется основанием системы счисления, а сама система называется K-ичнойю Например, основанием десятичной системы счисления является число 10; двоичной – число 2; восьмеричной – число 8. Запись произвольного числа X в K-ичной позиционной системе счисления основывается на представлении этого числа в виде полинома: X=an*Kn+an-1*Kn-1+…+a1*K1*a0*K0+a-1*K-1+…+a-m*K-m Все известные позиционные системы счисления являются аддитивно-мультипликативными. Арифметические действия над числами в позиционной системе счисления производятся по тем же правилам, что и в десятичной системе счисления, так как все они основываются на правилах выполнения действий над соответствующими полигонами. При этом нужно только пользоваться теми таблицами сложения и умножения, которые имеют место при данном основании K системы счисления. Двоичная система счисления. В современной вычислительной технике, в устройствах автоматики и связи широко используется двоичная система счисления. Эта система с наименьшим возможным основанием. В ней для изображения числа используются только две цифры: 0 и 1. Произвольное число в двоичной системе счисления представляется в виде полинома: X=an*2n+an-1*2n-1+…+a1*21*a0*20+a-1*2-1+…+a-m*2-m Где каждый коэффициент an может быть либо 0 или 1. Примеры изображения чисел в двоичной системе счисления:
Таблица сложений чисел в двоичной системе имеет вид
Таблица умножений в двоичной системе счисления имеет вид
Дата добавления: 2014-01-06; Просмотров: 412; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |