Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Наивероятнейшее число наступления событий в схеме Бернулли




Для того чтобы найти вероятность появления события ровно раз в серии опытов, достаточно произвести перемножение сомножителей в производящей функции. Коэффициент при члене и даст искомую вероятность.

Мы предполагали, что вероятность наступления события в каждом из опытов постоянна. На практике часто приходится встречаться с более сложным случаем, когда опыты производятся в неодинаковых условиях, и вероятность события от опыта к опыту меняется. Например, производится серия выстрелов при изменяющейся дальности.

Случай непостоянной вероятности появления события в опытах

 

Способ вычисления вероятности заданного числа появлений событий в таких условиях дает общая теорема о повторении опытов.

Пусть проводится независимых опытов, в каждом из которых может появиться или не появиться некоторое событие , причем вероятность появления этого события в -м опыте равна , а вероятность его не появления соответственно . Требуется найти вероятность того, что в результате опытов событие появится ровно раз.

Решение данной задачи проводится с помощью так называемой производящей функции, имеющей вид:

 

.

 

 

Пример. Производится 4 независимых выстрела по одной и той же цели с различных расстояний. Вероятности попадания при этих выстрелах равны соответственно

 

.

 

Найти вероятность трех попаданий.

Решение: Составим производящую функцию

 

 

Отсюда вероятность трех попаданий равна 0,040. Легко найти и вероятности ни одного, одного, двух и четырех попаданий, выписывая коэффициенты при и .

 

Число наступлений события называется наивероятнейшим, если оно имеет наибольшую вероятность по сравнению с вероятностями наступления любое другое количество раз.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 565; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.