1. Двумерная плотность вероятности неотрицательна: .
2. Двойной несобственный интеграл с бесконечными пределами от двумерной плотности вероятности равен единице:.
Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина.
Теорема. Для того чтобы случайные величины и были независимыми, необходимо и достаточно, чтобы функция распределения системы (, ) была равна произведению функций распределения составляющих: .
Следствие. Для того чтобы случайные величины и были независимыми, необходимо и достаточно, чтобы плотность совместного распределения системы (, ) была равна произведению плотностей распределения составляющих: .
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление