Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод трапеции




Метод 22

Метод прямоугольников.

Метод 21

Численное интегрирование.

Тема №6

Метод возмущения параметров.

Метод 20

Нам дана система

 

 

…………………..

 

Наряду с системой, решение которой необходимо найти, мы решаем систему из такого же числа уравнений решение которой известно.

 

 

 

 

……………………

 

Деформируя (возмущая) уравнение системы с известным решением, с помощью конечного числа N (малых приращений), преобразуем их к системе, решение которой надо найти.

Деформацию можно проводить различными способами.

Например, на шаге деформации с номером k деформацию можно записать в виде

, где i – это номер уровня.

Если число шагов деформации N достаточно велико, то деформация системы на каждом шаге будет не значительна.

Решение системы (G) можно использовать как начальное приближение неизвестных для итерационного решения полученного при первой деформации системы. Так как эта система при достаточно больших значениях N мало отличается от предыдущей то, вероятно, что сходимость для деформируемой системы будет обеспечена.

После этого производится вторая деформация. И используя решения, полученные для первой деформации в качестве начального приближения, найдём корень системы после второй деформации. В конце счета, когда номер деформации k= N решаемая система становится эквивалентной исходной (F).

Применение может привести к значительному увеличению объёма вычислений. Однако при этом возрастают шансы на то, что метод сойдётся.

 

 

Определённый интеграл

где,

 

 

 

 

y=F(x)
b
a
y
x
 

Часто возникает задача численного интегрирования, например в таких случаях когда:

1) аналитически, через элементарные функции интеграл не берётся;

2) численное интегрирование необходимо использовать, если подинтегральная функция задана в табличном виде.

При численном интегрировании используется определение интеграла и его геометрического смысла. Приближенное значение интеграла мы получим, если в интегральной сумме ограничимся конечным числом слагаемых.

 

Простейшим методом численного интегрирования является метод прямоугольников. В этом методе интеграл вычисляется с помощью усеченной интегральной суммы, а в качестве точки

берётся середина отрезка. При вычислении можно использовать правую или левую сторону этого отрезка

 

b
 
y
x
 
y=F(x)
а

В этом методе интеграл, приближенно заменяется на сумму площадей трапеций, образующихся после замены графика функции ломаной, соединяющей точки.

b
 
y
x
 
y=F(x)
а
Y1
Y0
x0
x1

Площадь трапеции с номером равняется

 

-шаг интегрирования

Для практического использования важен случай интегрирования с постоянным шагом тогда

Погрешность интегрирования определяется шагом разбиения h. С уменьшением h точность возрастает. Точность вычисления интеграла по методу прямоугольников и трапеций имеет порядок.

При интегрировании методом прямоугольников подинтегральная функция на каждом частном отрезке апроксимируется постоянной величиной равной

А в методе трапеций подинтегральная функция апроксимируется линейной зависимостью, проходящей через точку,. Существуют методы, для которых подинтегральная функция апроксимируется другими зависимостями.

 




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 355; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.