КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Формальные правила двоичной арифметики
Выбор системы счисления При выборе системы счисления для ЭВМ необходимо учитывать, что во-первых, основание системы счисления определяет количество устойчивых состояний, которые должен иметь функциональный элемент, выбранный для изображения разрядов числа; во-вторых - длина числа существенно зависит от основания системы счисления; в третьих - система счисления должна обеспечить простые алгоритмы выполнения арифметических и логических операций. Если имеется n разрядов для изображения числа в q -ичной системе счисления, то тогда максимальное число М, которое можно изобразить в пределах данной разрядной сетки, будет равно:
M = q n - 1 q n
Для оценки экономичности системы счисления с точки зрения затрат оборудования цифрового автомата вводится соответствующий показатель:
N = qn
Из приведенных равенств следует, что N = q lnM / ln q. Используя полученную зависимость, можно найти основание системы счисления, при которой требуется минимум оборудования. Определив dN/d q и приравняв ее к нулю, получим экстремум при q = e. Но е не целое число, поэтому нужно использовать системы с q = 2 или q = 3. Эти системы практически равноценны, т.к.
N2/ N3 = 2ln3 / 3ln2 1.056
Подобное сравнение десятичной и двоичной систем счисления показывает, что десятичная в 1.5 раз менее экономична двоичной. Наиболее удобны условия реализации двоичных цифр, т.к. физических процессов, имеющих два устойчивых состояния, гораздо больше, чем процессов с числом четко различимых состояний больше двух. К тому же в процессах с двумя устойчивыми состояниями различие между этими сотояниями носит качественный, а не количественный характер, что обеспечивает надежную реализацию двоичных цифр. Таким образом, простота арифметических и логических действий, минимум используемого оборудования для представления чисел и наиболее удобные условия реализации только двух устойчивых состояний определили применение двоичных систем счисления практически во всех существуюющих и проектируемых цифровых вычислительных машинах.
Перед тем, как рассмотреть формальные правила двоичной арифметики подчеркнем общий принцип сложения и вычитания чисел представленных в любой позиционной системы счисления. В общем случае процедуры сложения и вычитания двух чисел A B = C в любой позиционной системы счисления начинаются с младших разрядов. Код суммы каждго i -того разряда с i получается в результате сложения a i + b i +1, где единица соответствует переносу из младшего (i - 1)-разряда в i -тый, если в младшем разряде код суммы получился больше или равным основанию системы счисления. Код разности каждого i -того разряда получается в результате вычитания a i - b i -1, где единица соответствует заему, если он был, в младшие разряды величины, равной основанию системы счисления. Следовательно, правила и методы сложения и вычитания в любой позиционной системы счисления в принципе остаются такими же, как в десятичной системе. Теперь рассмотрим правила арифметики с числами, представленными в двоичном коде. Сложение двух чисел выполняется поразрядно, начиная с младшего разряда. В каждом разряде выполняется сложение двух цифр слагаемых и единицы переноса из соседнего младшего разряда: 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 и осуществляется перенос 1 в старший соседний разряд. Например: 01012 = 510 +00112 = 310 10002 = 810
Вычитание также производится поразрядно, начиная с младшего разряда. При вычитании в данном разряде из нуля единицы необходимо занять единицу из соседнего старшего разряда, которая равна двум единицам данного разряда: 0 - 0 = 0 1 - 0 = 1 1 - 1 = 0 0 - 1 =1 после заема единицы из соседнего старшего разряда. Например: 01102 = 610 -00112 = 310 00112 = 310
Суммирование двоичных чисел в компьютерах осуществляется при помощи двоичных сумматоров, а вычитание - двоичных вычитателей. Но как будет показано в дальнейшем, вычитание можно организовать также при помощи процедуры сложения, т.е. при помощи двоичных сумматоров, если вычитаемое представить в "дополнительном" или "обратном" коде и тем самым исключить необходимость в двоичных вычитателях. Умножение двоичных чисел производится путем образования про-межуточных произведений и последующего их суммирования. Промежуточные поразрядные произведения формируются по следующим правилам:
0 x 0 = 0 101 510 x 310 = 1510 0 x 1 = 0 11 1 x 0 = 0 101 1 x 1 = 1 + 101
Деление чисел в двоичной системе производится по правилам умножения и вычитания. Например: 110: 11 = 10 610: 310 = 210 11 00 Арифметические действия с двоичными числами подробно будут рассмотрены в дальнейшем. При выполнении любых арифметических действий важное значение имеют такие электронные устройства, как двоичный полусумматор и двоичный сумматор, которые выполняют побитное двоичное сложение по ранее приведенным правилам. Для двоичного вычитания иногда используют и двоичный вычитатель. Приведем условное обозначение двоичных полусумматора и сумматора:
ai HS S ci ai SM S ci bi bi P Pi Pi-1 P Pi
а) б)
Рис.2.1 Условное обозначение полусумматора (а) и двоичного сумматора (б).
Здесь a i и b i это i -тые разряды чисел А и В, которые складываются, а c i - i -тый разряд суммы этих чисел, Pi - перенос из данного разряда в соседний следующий старший, Pi-1 - перенос из соседнего младшего в данный разряд. Если для представления двоичных чисел А, В, С и их знаков выделена n -разрядная сетка, то очевидно, что для организации процедуры сложения необходимо n двоичных сумматоров, которые соединяются между собой по определенной схеме, зависящей от того в каком коде представляются эти двоичные числа: прямой, обратный или дополнительный. Очевидно, что в арифметических устройствах цифровых автоматов помимо двоичных сумматоров используются также регистры, счетчики, различные триггера и электронные устройства, выполняющие различные логические процедуры. Обычно используемые регистры должны позволять не только параллельно записывать в них двоичные коды чисел, но и сдвигать изображения этих чисел влево и вправо на необходимое число двоичных разрядов. Простейшую блок-схему узла, выполняющего процедуру сложения A+B=C можно представить следующим образом:
A Pr
CM Pr Pr C B
где Рr - некоторые регистры, в которые записываются двоичные числа А, В и С; СM - сумматор, точнее группа сумматоров n SM, где n - длина разрядной сетки, отведенной для представления чисел А, В и С. Помимо арифметических операций в цифровых автоматах реализуются также логические операции, которые подробно рассматриваются в последующих главах. Кроме этих операций в цифровых автоматах, компьютерах, выполняется еще одна операция над двоичными числами - это сдвиг числа по разрядной сетке влево или вправо. В случае сдвига влево фактически осуществляется умножение двоичного числа на 2, а при сдвиге вправо - деление на 2, где - количество разрядов, на которое сдвигается двоичное число. Например: 0000112= 310 сдвинем влево на 2 разряда, получим 0011002 = 1210, т.е. 3х4(22) = 1210, а теперь 0010002 = 810 сдвинем на 2 разряда вправо, получим 0000102 = 210, т.е. 8:4(22) = 210. В компьютерах часто используется циклический сдвиг, при выполнении которого разрядная сетка, отведенная для операнда, представляется замкнутой в кольцо. Тогда при сдвиге влево содержимое старшего разряда попадает в младший разряд операнда, а при сдвиге вправо - наоборот.
Дата добавления: 2014-01-06; Просмотров: 490; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |