КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Волновая функция. Уравнение Шредингера
Закономерности в атомных спектрах.
При проведении экспериментальных исследований спектров излучения водорода Бальмер установил, что атомы водорода (как и атомы других элементов) излучают электромагнитные волны строго определённых частот. Причем оказалось, что величину, обратную длине волны спектральной линии, можно рассчитать, как разность, некоторых двух величин, которые называются спектральными термами, т.е. справедливо соотношение: (12) Количественная обработка экспериментально полученных спектров водорода показала, что термы можно записать следующим образом:
(13) где R – постоянная Ридберга, а n – целое число, которое может принимать ряд целых значений 1,2,3...
С учетом вышесказанного длину волны любой спектральной линии водорода можно рассчитать по обобщенной формуле Бальмера: (15) где числа n1 и n2 могут принимать значения: n1 = 1,2,3...; n2 = n1, n1 +1, n1 +2 … Длины волн, рассчитанные по формуле (15), очень точно совпали с экспериментально измеренными значениями длин волн в спектре излучения водорода. Сопоставив формулы (11) и (15) можно заключить, что формула (11) это та же обобщенная формула Бальмера, но полученная теоретически. Следовательно, значение постоянной Ридберга можно рассчитать по формуле: (16) Числа n1, n2 –это квантовые числа, являющиеся это номерами стационарных орбит между которыми происходит квантовый скачок электрона. Если измерить значение постоянной Ридберга экспериментально, то, воспользовавшись соотношением (16) можно рассчитать постоянную Планка h.
Гипотеза де Бройля. Соотношение неопределённостей Гейзенберга. Де Бройль выдвинул гипотезу об универсальности корпускулярного волнового дуализма, т.е. свойствами волны частицы обладают не только фотоны, но и микрочастицы. Для фотона. Ввиду единства всех материй такое же выражение должно быть и для микрочастицы, т.е. можно прописать, где h – длина волны Де Бройля, p – импульс частиц. В подтверждение гипотезы служит дифракция электронов в кристаллах (электронные частицы создают дифракционную картину). Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновой ограничением, пришёл к выводу, что любой объект микромира нельзя одновременно характеризовать определённой координатой и импульсом, и предложил соотношение между p и координатой:
Гейзенберг предложил соотношение неопределённости для энергии и времени: , где – неопределенность энергии. Чем больше в каком-то состоянии, тем меньше.
Физикой микрочастиц, учитывая волновые свойства, является квантовая механика. Особенностью квантовой механики является использование вероятностного подхода к описанию микрочастиц. Состояние микрочастиц должно описываться волновой функцией, связанной с вероятностью. Т.к. функция меняется по волновому закону, т.е. принимает положительные и отрицательные значения, она сама не может быть вероятностью. Бором было установлено, что механическим смыслом обладает не сама эта функция, а её квадрат. Эту функцию назвали волновой или ψ функцией. – плотность вероятности, т.е. соотношение вероятности dW того, что частица находится в объёме dV=dxdydz к величине этого объёма. Если известен, то легко вычислить радиус орбиты электрона в атоме. Функция должна быть конечной, однозначной и непрерывной. Она удовлетворяет условию нормировки. - т.е. вероятность нахождения частицы в пространстве =1. Все ψ удовлетворяют принципу суперпозиции, т.е. если она может находиться в некоторых состояниях ψ1, ψ2…, то возможно также состояние ψ, которое является линейной комбинацией этого состояния, где Ci – весовые коэффициенты. Уравнение, решением которого является вид функции ψ, постулировано Шлебенсором в 1926:, где, m – масса; - оператор Лапласа; U(xyzt) – потенциальная энергия микрочастицы в внешнем поле. Для стационарного случая, когда U(xyzt) не зависит от времени, функцию ψ(xyz) можно записать,. =>. В общем виде оно не решается. Конкретный вид его определяется начальными граничными условиями. Решение существует только для определённых E, т.е. такая частица имеет дискретный спектр.
Дата добавления: 2014-01-06; Просмотров: 558; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |