Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пассивный и активный двухполюсники. Теорема об активном двухполюснике

Двухполюсником называется часть электрической цепи любой сложности и произвольной конфигурации, выделенная относительно двух зажимов (двух полюсов).

Двухполюсник, не содержащий источников энергии или содержащий скомпенсированные источники (суммарное действие которых равно нулю), называется пассивным. Если в схеме двухполюсника имеются нескомпенсированные источники, он называется активным. На схеме двухполюсник обозначают прямоугольником с двумя выводами (рис. 1.14). Это обозначение можно условно рассматривать как коробку, внутри которой находится электрическая цепь.

Рис. 1.14. Пассивный (а) и активный (б) двухполюсники

Пассивный двухполюсник является потребителем энергии и может быть заменен эквивалентным сопротивлением, величина которого равна входному сопротивлению двухполюсника (см., например, рис. 1.15).

Рис. 1.15. Замена пассивного двухполюсника сопротивлением

Активный двухполюсник ведет себя как генератор. Находящиеся внутри него нескомпенсированные источники отдают энергию во внешнюю цепь (рис. 1.16, а). Можно попытаться подобрать источник энергии с ЭДС ЕЭ и внутренним сопротивлением RЭ, который будет эквивалентен двухполюснику, то есть будет создавать во внешней цепи тот же самый ток (рис. 1.16, б).

Полученный генератор должен быть эквивалентен двухполюснику в любом режиме, в том числе и в режимах холостого хода и короткого замыкания. Источники энергии, входящие в состав активного двухполюсника, в режиме холостого хода создают на его зажимах напряжение UХ (рис. 1.17, а), а при коротком замыкании вызывают ток IK (рис. 1.17, б).

Рис. 1.16. Замена активного двухполюсника эквивалентным генератором

Из схем, приведенных на рис. 1.17, следует:

откуда

Рис. 1.17. Холостой ход (а) и короткое замыкание (б) активного двухполюсника

Итак, любой активный двухполюсник может быть заменен эквивалентным генератором, ЭДС которого ЕЭ равна напряжению холостого хода двухполюсника, а внутреннее сопротивление RЭ напряжению холостого хода, деленному на ток короткого замыкания.

Это утверждение и есть теорема об активном двухполюснике (эквивалентном генераторе).

Пример 1.4. Заменить активный двухполюсник, выделенный пунктиром на рис. 1.18, а, эквивалентным генератором (рис. 1.18, б). Численные значения параметров цепи составляют: Е 1 = 200 В, Е 2 = 100 В, R 1 = 50 Ом, R 2 = 20 Ом, R 3 = 20 Ом.

Рис. 1.18. Замена активного двухполюсника эквивалентным генератором

Р е ш е н и е. Напряжение холостого хода, определяющее величину ЭДС эквивалентного генератора, можно найти по схеме на рис. 1.19, а любым известным способом.

Рис. 1.19. Режимы холостого хода (а) и короткого замыкания (б)

Воспользуемся, например, методом контурных токов. Принимая в качестве контурных токи I 1 Х для левого контура и I 3 Х для правого, записываем контурные уравнения, из которых определяем контурные токи:

Напряжение холостого хода – это напряжение между точками m и n. Оно равно падению напряжения на сопротивлении R 3:

75 В.

Таким образом, ЭДС эквивалентного генератора ЕЭ = 75 В.

Применим теперь метод узловых потенциалов.

Принимая потенциал узла n равным нулю (j n = 0), для узла m запишем узловое уравнение:

(1.12)

где 0,02 См; 0,05 См; 0,05 См.

Из уравнения (1.12) имеем:

75 В.

Получили тот же самый результат.

Приступаем к расчету режима короткого замыкания. Ток IK в схеме на рис. 1.19, б найдем методом наложения. При действии только первой ЭДС ее ток проходит по первой ветви и, минуя вторую и третью ветви, замыкается по проводнику, закорачивающему зажимы двухполюсника:

4 А.

Аналогично находим ток, вызываемый второй ЭДС:5 А.

Ток в третьей ветви равен нулю, так как она закорочена. Поэтому

IK = I 1 K + I 2 K = 9 A.

В соответствии с теоремой об эквивалентном генераторе

8,33 Ом.

<== предыдущая лекция | следующая лекция ==>
Эквивалентное преобразование треугольника и звезды сопротивлений | Метод эквивалентного генератора
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1551; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.