КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Резонансы в электрических цепях
Резонансом называют режим, когда в цепи, содержащей индуктивности и емкости, ток совпадает по фазе с напряжением. Входные реактивные сопротивление и проводимость равны нулю: x = ImZ = 0 и B = ImY = 0. Цепь носит чисто активный характер: Z = R; сдвиг фаз отсутствует (j = 0). В цепи, содержащей последовательно соединенные участки с индуктивным и емкостным характерами сопротивлений, резонанс называется резонансом напряжений. Рассмотрим простейшую цепь такого вида (рис. 2.23), которую часто называют последовательным контуром. Для нее резонанс наступает при x = xL – xC = 0 или xL = xC, откуда (2.33) Напряжения на индуктивности и емкости в этом режиме равны по величине и, находясь в противофазе, компенсируют друг друга. Все приложенное к цепи напряжение приходится на ее активное сопротивление (рис. 2.42, а). Рис. 2.42. Векторные диаграммы при резонансе напряжений (а) и токов (б) Напряжения на индуктивности и емкости могут значительно превышать напряжения на входе цепи. Их отношение, называемое добротностью контура Q, определяется величинами индуктивного (или емкостного) и активного сопротивлений . `Добротность показывает, во сколько раз напряжения на индуктивности и емкости при резонансе превышают напряжение, приложенное к цепи. В радиотехнических цепях она может достигать нескольких сотен единиц. Из условия (2.33) следует, что резонанса можно достичь, изменяя любой из параметров – частоту, индуктивность, емкость. При этом меняются реактивное и полное сопротивления цепи, а вследствие этого – ток, напряжение на элементах и сдвиг фаз. Не приводя анализа формул, показываем графические зависимости некоторых из этих величин от емкости (рис. 2.43). Емкость , при которой наступает резонанс, можно определить из формулы (2.33): . Если, например, индуктивность контура L = 0,2 Гн, то при частоте 50 Гц, резонанс наступит при емкости мкФ. Рис. 2.43. Зависимости параметров режима от емкости Аналогичные рассуждения можно провести и для цепи, состоящей из параллельно соединенных R, L и C (рис. 2.31, а). Векторная диаграмма ее резонансного режима приведена на рис. 2.42, б. Рассмотрим теперь более сложную цепь с двумя параллельными ветвями, содержащими активные и реактивные сопротивления (рис. 2.44, а). Рис. 2.44. Разветвленная цепь (а) и ее эквивалентная схема (б) Для нее условием резонанса является равенство нулю ее реактивной проводимости: ImY = 0. Это равенство означает, что мы должны мнимую часть комплексного выражения Y приравнять к нулю. Определяем комплексную проводимость цепи. Она равна сумме комплексных проводимостей ветвей: . Приравнивая к нулю выражение, стоящее в круглых скобках, получаем: или . (2.34) Левая и правая части последнего выражения представляют собой не что иное, как реактивные проводимости первой и второй ветвей B1 и B2. Заменяя схему на рис. 2.44, а эквивалентной (рис. 2.44, б), параметры которой вычисляем по формуле (2.31), и используя условие резонанса (B = B1 – B2 = 0), снова приходим к выражению (2.34). Схеме на рис. 2.44, б соответствует векторная диаграмма, приведенная на рис. 2.45. Рис. 2.45. Векторная диаграмма резонансного режима разветвленной цепи Резонанс в разветвленной цепи называется резонансом токов. Реактивные составляющие токов параллельных ветвей противоположны по фазе, равны по величине и компенсируют друг друга, а сумма активных составляющих токов ветвей дает общий ток. Пример 2.23. Считая R2 и x3 известными, определить величину x1, при которой в цепи наступит резонанс напряжений (рис. 2.46, а). Для резонансного режима построить векторную диаграмму. Рис. 2.46. Электрическая цепь и ее векторная диаграмма Решение. При резонансе напряжение U1 на индуктивном сопротивлении x1 равно реактивной составляющей напряжения Uab: I1x1 = I1xab, откуда x1 = xab. Последнее есть реактивное сопротивление последовательной эквивалентной схемы замещения участка ab: . Задача может быть решена и символическим методом. В соответствии с условием резонанса напряжений, мы должны приравнять к нулю мнимую часть комплексного сопротивления цепи. Величина последнего равна . Сумму всех коэффициентов при мнимой единице приравниваем к нулю: , откуда . Построение векторной диаграммы начинаем с вектора I1 (рис. 2.46, б). В том же направлении проводим вектор приложенного к цепи напряжения U – при резонансе они совпадают по фазе. Напряжение на индуктивности опережает ток на 90°, его вектор U1 направляем вверх. Вектор Uab проводим так, чтобы он в сумме с вектором U1 давал вектор U. Ток I2 совпадает по фазе с Uab, а I3 опережает последний на 90°. В сумме векторы I2 и I3 дают вектор I1.
Дата добавления: 2014-01-06; Просмотров: 614; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |