Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Резонансы в электрических цепях

Резонансом называют режим, когда в цепи, содержащей индуктивности и емкости, ток совпадает по фазе с напряжением. Входные реактивные сопротивление и проводимость равны нулю: x = ImZ = 0 и B = ImY = 0. Цепь носит чисто активный характер: Z = R; сдвиг фаз отсутствует (j = 0).

В цепи, содержащей последовательно соединенные участки с индуктивным и емкостным характерами сопротивлений, резонанс называется резонансом напряжений. Рассмотрим простейшую цепь такого вида (рис. 2.23), которую часто называют последовательным контуром. Для нее резонанс наступает при x = xL – xC = 0 или xL = xC, откуда

(2.33)

Напряжения на индуктивности и емкости в этом режиме равны по величине и, находясь в противофазе, компенсируют друг друга. Все приложенное к цепи напряжение приходится на ее активное сопротивление (рис. 2.42, а).

Рис. 2.42. Векторные диаграммы при резонансе напряжений (а) и токов (б)

Напряжения на индуктивности и емкости могут значительно превышать напряжения на входе цепи. Их отношение, называемое добротностью контура Q, определяется величинами индуктивного (или емкостного) и активного сопротивлений

.

`Добротность показывает, во сколько раз напряжения на индуктивности и емкости при резонансе превышают напряжение, приложенное к цепи. В радиотехнических цепях она может достигать нескольких сотен единиц.

Из условия (2.33) следует, что резонанса можно достичь, изменяя любой из параметров – частоту, индуктивность, емкость. При этом меняются реактивное и полное сопротивления цепи, а вследствие этого – ток, напряжение на элементах и сдвиг фаз. Не приводя анализа формул, показываем графические зависимости некоторых из этих величин от емкости (рис. 2.43). Емкость , при которой наступает резонанс, можно определить из формулы (2.33):

.

Если, например, индуктивность контура L = 0,2 Гн, то при частоте 50 Гц, резонанс наступит при емкости

мкФ.

Рис. 2.43. Зависимости параметров режима от емкости

Аналогичные рассуждения можно провести и для цепи, состоящей из параллельно соединенных R, L и C (рис. 2.31, а). Векторная диаграмма ее резонансного режима приведена на рис. 2.42, б.

Рассмотрим теперь более сложную цепь с двумя параллельными ветвями, содержащими активные и реактивные сопротивления (рис. 2.44, а).

Рис. 2.44. Разветвленная цепь (а) и ее эквивалентная схема (б)

Для нее условием резонанса является равенство нулю ее реактивной проводимости: ImY = 0. Это равенство означает, что мы должны мнимую часть комплексного выражения Y приравнять к нулю.

Определяем комплексную проводимость цепи. Она равна сумме комплексных проводимостей ветвей:

.

Приравнивая к нулю выражение, стоящее в круглых скобках, получаем:

или . (2.34)

Левая и правая части последнего выражения представляют собой не что иное, как реактивные проводимости первой и второй ветвей B1 и B2. Заменяя схему на рис. 2.44, а эквивалентной (рис. 2.44, б), параметры которой вычисляем по формуле (2.31), и используя условие резонанса (B = B1 – B2 = 0), снова приходим к выражению (2.34).

Схеме на рис. 2.44, б соответствует векторная диаграмма, приведенная на рис. 2.45.

Рис. 2.45. Векторная диаграмма резонансного режима разветвленной цепи

Резонанс в разветвленной цепи называется резонансом токов. Реактивные составляющие токов параллельных ветвей противоположны по фазе, равны по величине и компенсируют друг друга, а сумма активных составляющих токов ветвей дает общий ток.

Пример 2.23. Считая R2 и x3 известными, определить величину x1, при которой в цепи наступит резонанс напряжений (рис. 2.46, а). Для резонансного режима построить векторную диаграмму.

Рис. 2.46. Электрическая цепь и ее векторная диаграмма

Решение. При резонансе напряжение U1 на индуктивном сопротивлении x1 равно реактивной составляющей напряжения Uab: I1x1 = I1xab, откуда x1 = xab. Последнее есть реактивное сопротивление последовательной эквивалентной схемы замещения участка ab:

.

Задача может быть решена и символическим методом. В соответствии с условием резонанса напряжений, мы должны приравнять к нулю мнимую часть комплексного сопротивления цепи. Величина последнего равна

.

Сумму всех коэффициентов при мнимой единице приравниваем к нулю:

, откуда .

Построение векторной диаграммы начинаем с вектора I1 (рис. 2.46, б). В том же направлении проводим вектор приложенного к цепи напряжения U – при резонансе они совпадают по фазе. Напряжение на индуктивности опережает ток на 90°, его вектор U1 направляем вверх. Вектор Uab проводим так, чтобы он в сумме с вектором U1 давал вектор U. Ток I2 совпадает по фазе с Uab, а I3 опережает последний на 90°. В сумме векторы I2 и I3 дают вектор I1.

 

<== предыдущая лекция | следующая лекция ==>
О расчете цепей синусоидального тока | Энергия и мощность в цепи синусоидального тока
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 614; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.