Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Виды термической обработки сталей

Структурно-механические превращения в сталях при нагреве и охлаждении.

Термическая обработка металлических материалов.

Лекция №9

1. Общие положения термической обработки.

Основные параметры режима термической обработки: температура нагрева tмах; время выдержки при температуре нагрева τв скорость нагрева vнагр скорость охлаждения vохл.  

Цель любого процесса термической обработки – изменение структуры и свойств металла. Основные факторы воздействия при термической обработке – температура и время. Режим термической обработки можно представить графиком в координатах: t (температура) – τ (время):

 
 

Виды термической обработки

Для изменения свойств сплава необходимо, чтобы в сплаве в результате Т/О произошли остающиеся изменения, обусловленные фазовыми превращениями.

Все виды Т/О можно разделить на 4 основные группы:

1 группа. Отжиг первого рода – нагрев металла, который в результате какой-либо предшествующей обработки (например, холодной пластической деформации) получил неустойчивое состояние, и приводящий его в более устойчивое состояние.

2 группа. Отжиг второго рода, или фазовая перекристаллизация – нагрев выше температуры фазового превращения (эвтектоидное превращение, растворение второй фазы) и охлаждение с малой скоростью, приводящий сплав к структурному равновесию.

3 группа. Закалка - нагрев выше температуры фазового превращения с последующим быстрым охлаждением для получения структурно неустойчивого состояния сплава. Предельный случай закалки (истинная закалка)- фиксируется состояние сплава, характерное для высоких температур. Закалка в более широком смысле – фиксируется некоторая стадия структурного превращения сплава (распад), являющаяся промежуточной между равновесной структурой (отожженной) и предельно неравновесной (характерной для высоких температур).

4 группа. Отпуск и старение – нагрев закаленного сплава ниже температуры равновесных фазовых превращений для получения более устойчивого структурного состояния сплава. Термин отпуск используют обычно применительно к сталям и другим сплавам, испытывающим при закалке полиморфное превращение. Термин старение – применительно к сплавам, не претерпевающим при закалке полиморфного превращения.

2. Термическая обработка стали.

Основой для изучения термической обработки стали является диаграмма железо – углерод (область сталей). Верхней температурной границей при термической обработке является линия солидуса АСD.

Температуры равновесных превращений (критические точки) принято обозначать буквой А с соответствующим индексом:

Эвтектоидную температуру (линия PSK) обозначают А1 (727оС), температуру магнитного превращения А2 (точка Кюри 768оС), температуру линии GS – А3, температуру полиморфного превращения Feγ→Feδ – А4, температуру линии SE – Аcm.

Вследствие гистерезиса температуры превращений при нагреве всегда выше соответствующих температур при охлаждении, поэтому введена дополнительная индексация – при нагреве – индекс с, при охлаждении – индекс r.

Четыре основных превращения при термической обработке в стали

При термической обработке стали наблюдаются следующие превращения:

1. Превращение перлита в аустенит, протекающее выше точки А1.

α + Fe3C → γ

2. Превращение аустенита в перлит, протекающее ниже А1

γ → α + Fe3C

3. Превращение аустенита в мартенс ит:

γ → М

4. Превращение мартенсита в перлит (в феррито-карбидную смесь):

М → α + Fe3C

<== предыдущая лекция | следующая лекция ==>
Двустороннее проведение | Образование аустенита
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 462; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.