Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 1. Системы с конвейерной обработкой информации




ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

Принцип конвейерной обработки информации нашел широкое применение в вычислительной технике. В первую очередь это относится к конвейеру команд. Практически все современные ЭВМ используют этот принцип. Вместе с тем во многих вычислительных системах наряду с конвейером команд используется и конвейер данных. Сочетание этих двух конвейеров дает возможность достигнуть очень высокой производительности систем на определенных классах задач, особенно если при этом используется несколько конвейерных процессоров, способных работать одновременно и независимо друг от друга. Именно так и построены самые высокопроизводительные системы. Рассмотримь принцип конвейерной обработки на примере некоторых, наиболее представительных систем.

Определенный интерес представляет построение современной IВМ. Пять основных устройств системы: ОЗУ, управления памятью с буферным ОЗУ, процессор команд, операционные устройства для выполнения операций с плавающей запятой, с фиксированной запятой и десятичной арифметики работают одновременно и независимо друг от друга. Оперативное ЗУ построено по многомодульному принципу (до 32 модулей), устройство управления памятью работает по принципу конвейера и обеспечивает чередование адресов при обращении процессора и каналов ввода – вывода информации к ОЗУ.

 

Рис. 3.1. Система STAR-100

Кроме конвейера команд в системах IВМ используется также и конвейерная обработка данных. Существенно более полно используется принцип магистральной обработки в системе STAR-100, (разработанной фирмой СDС). Система содержит три конвейерных процессора (рис. 3.1): ППЗ – процессор, содержащий конвейерные устройства сложения и умножения с плавающей запятой; ППФЗ – процессор, содержащий конвейерное устройство сложения с плавающей запятой, конвейерное многоцелевое устройство, выполняющее умножение с фиксированной запятой, деление и извлечение квадратного корня; СП – специальный конвейерный 16-разрядный процессор, выполняющий операции с фиксированной запятой и ряд логических операций.

Конвейерные процессоры оперируют с 64- или 32-разрядными числами. Оперативное ЗУ построено по модульному принципу (32-модуля памяти) и работает с чередованием адресов под управлением устройства УП (управление памятью). (Полный цикл ОЗУ–1,28 мкс, т. е. 40X32 нc.)

Конвейерный сумматор с плавающей запятой состоит из четырех сегментов – специализированных операционных устройств (см. рис. 2.2, а). Продолжительность цикла каждого сегмента составляет 40 нс; таким образом, время выполнения операции сложения с плавающей запятой равно 160 нс.

Рис. 3.2. Конвейер системы АSС

Конвейерный умножитель включает в себя 8 сегментов, поэтому время выполнения операции умножения составляет 320 нс. Но при загрузке конвейерных процессоров длинной последовательностью операндов, над которыми производится одна и та же операция, результат выдается каждые 40 нс. Учитывая, что каждый из двух основных процессоров может выдавать по два 32-разрядных результата, нетрудно подсчитать, что система STAR-100 может в пределе выполнять до 100 млн. операций в секунду.

Устройства конвейерной обработки далеко не всегда выполняют с жесткой настройкой на одну определенную операцию. Чаще их делают многоцелевыми, вводя в конвейер сегменты, необходимые для реализации полного набора операций, в процессе выполнения которых весь тракт настраивается соответствующим образом. На рис. 3.2 представлена структура системы АSС фирмы «Техас Инструменте» и показано, какие сегменты универсальной цепочки работают при различных операциях.

 

Лекция 2. Система СRAY

Одной из наиболее высокопроизводительных вычислительных систем в мире общепризнанно считается система СКАУ. В этой системе конвейерный принцип обработки используется в максимальной степени: имеется и конвейер команд, и конвейер арифметических и логических операций. Кроме того, в системе широко применяется совмещенная обработка информации несколькими устройствами. Все это позволило при решении научных задач достигнуть чрезвычайно высокой производительности – до 250 млн. операций в секунду

Рис. 3.3. Система СRAY

Система CRAY (рис. 3.3) состоит из четырех секций: функциональных устройств, регистров, управления программой, памяти и ввода – вывода. В системе 12 функциональных устройств, работающих в режиме конвейера, разбитых на 4 группы: адресную, скалярную, операций с плавающей запятой и векторную. Число сегментов в каждом функциональном устройстве (указано в скобках на схеме) сравнительно невелико, оно зависит от сложности операций и колеблется в пределах от 1 до 14 (вычисление обратной величины). Такое сравнительно небольшое число сегментов в каждом магистральном устройстве имеет определенные преимущества – они сравнительно быстро заполняются. Длительность цикла каждого сегмента составляет 12,5 нс: это значит, что каждые 12,5 нс любое функциональное устройство может выдавать результаты.

Оперативная память системы, выполненная на интегральных схемах, имеет емкость 1 млн. слов (позже была увеличена до 4 млн.) и организована в виде 16 блоков памяти с независимым управлением емкостью по 64 кслов. Каждый блок включает в себя 72 модуля, причем модуль содержит один разряд всех 64 кслов. Система работает с 64-разрядными словами, 8 разрядов используется для коррекции одиночных и обнаружения двойных ошибок, что обеспечивает высокую надежность хранения информации. Независимые блоки дают возможность организовать 16-кратное чередование адресов. Цикл обращения к памяти – 50 нс.

Существенную роль в достижении столь высокой производительности играют быстрые регистры. Они разделены на 3 группы: адресные – А-регистры, скалярные – S-регистры и векторные – V-регистры. Адресные регистры 24-разрядные, их всего восемь; 64-разрядных 5-регистров также восемь и восемь 64-элементных V-регистров, причем каждый элемент вектора содержит 64-разрядное слово. Время обращения к регистру всего лишь 6 нc. В системе имеется еще две группы промежуточных регистров (между ОЗУ и А-, S- и V-регистрами): 24-разрядные В-регистры и 64-разрядные Т-регистры, на рисунке не показанные. Все эти регистры позволяют конвейерным устройствам работать с максимальной скоростью без непосредственного обращения к ОЗУ: все операнды получаются из регистров и результаты отправляются также в регистры. Благодаря регистрам конвейерные устройства связываются в цепочки, т. е, поток результатов засылаемых в векторный регистр одним устройством, одновременно служит входным потоком операндов для другого устройства; исключаются промежуточные обращения к памяти. Это является еще одной отличительной особенностью системы CRAY, повышающей ее производительность.

Состав операций универсальный, только вместо деления используется операция вычисления обратной величины. Общее число операций 128. Команды двух форматов – 16 и 32 разряда. Арифметические и логические команды имеют 16-разрядный формат 7 разрядов – код операции и по 3 разряда для адресов регистров операндов и результата, причем 6 разрядов адресов регистров операндов в совокупности с дополнительными 16 разрядами используются для обращения к основной памяти и командам перехода.

Ввод – вывод информации осуществляется через 24 канала, сгруппированных в 4 группы, причем в каждой группе имеются либо каналы ввода, либо каналы вывода информации. Обмен осуществляется двухбайтными кодами. Для связи с внешними абонентами используется периферийная ЭВМ.

Высокая производительность системы CRAY обеспечивается и другими факторами.

1. Конструкция ЭВМ весьма компактна, благодаря чему время передачи сигналов между устройствами мало, и это позволяет работать с тактом 12.5 нс.

2. Используется гибкая система адресации выборка из массивов может осуществляться по строкам, столбцам и диагоналям с произвольным постоянным шагом.

3. В состав системы входит подсистема дисковой памяти из четырех контроллеров, каждый из которых управляет четырьмя накопителями общей емкостью 76 854 млрд. бит.

4. Система имеет достаточно современное программное обеспечение, в том числе: операционную систему, рассчитанную на пакетную мультипрограммную обработку 63 задач; оптимизирующий компилятор с фортрана, автоматически распознающий циклы, удобные для реализации векторными командами; макроассемблер, библиотеку стандартных программ, загрузчик и другие средства.

Все это в совокупности и дает основание считать системы CRAY наиболее высокопроизводительными.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 1681; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.