Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тепловое расширение




Основные понятия, термины, определения

Тепловое расширение — это физическое свойство вещества и материала, характеризующееся изменением размеров тела в процессе его нагревания.

С точки зрения термодинамики тепловое расширение следует рассматривать как изобарический процесс, при котором теплота при нагревании затрачивается на производство работы по расширению и на увеличение внутренней энергии тела. Количественно оно характеризуется изобарным коэффициентом расширения или коэффициентом объемного теплового расширения β:

β = (1/ V)(dV/dТ)p,

где: V — объем тела (твердого, жидкого или газообразного);

Т — его абсолютная температура.

Практически значение β определяется по формуле:

β = (V1 –V2)/V1(T2-T1);

где: Т1 и Т2 — температуры соответственно до и после нагревания;

V1 и V2 — объемы тела соответственно при Т1 и Т2.

Механизм теплового расширения твердых тел

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом. Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Тепловое расширение зависит от химических связей, типа структуры кристаллической решетки, ее анизотропии и пористости твердого тела.

Связь “тип химической связи — тепловое расширение”

Материалы с очень прочными химическими связями, такие, как алмаз, карбид кремния и другие соединения с ковалентной связью, имеют низкие коэффициенты термического расширения — КТР, поскольку при увеличении потенциальной энергии тел с ковалентной связью ее симметричность практически не нарушается и равновесное межатомное расстояние изменяется незначительно.

В соединениях с ионной связью, например МgО, NаСI и др., при повышении температуры потенциальную энергию определяет главным образом сила притяжения. В результате кривая межатомного потенциала становится асимметричной и увеличение межатомного расстояния, т.е. расширение, становится значительным.

КТР металлов из-за слабости химической связи обычно достаточно высок.

Высокомолекулярные соединения со слабыми ван-дер-ваальсовыми связями имеют очень высокий КТР (табл. 4.2.).

Таблица 4.2. Химические связи и тепловое расширение

 

№ п/п Тип материала Тип хим. связи Вещество KTPxl0-6C-1, при 25°С
  Прир. мине­рал Ковалент-ная Алмаз -0,9
  Керамика   Кордиерит 1,7
    Муллит -5,0
    Карбид кремния 5,6
  Оксид Ионная Периклаз 13,5
  Соль   Хлористый натрий  
  Металлы Металли­ческая Железо 11,6
    Свинец 29,3
    Цинк 39,7
  Полимеры Ван-дер-ваальсовая Полиметил-метакрилат  
    Сложный полиэфир 55...100
    Полиэтилен  

Из таблицы видно, что КТР находится в прямой зависимости от прочности химической связи.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 883; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.