Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Статически неопределимая железобетонная колонна

Расчет статически неопределимых систем

Примеры использования законов механики для расчета строительных сооружений

Рассмотрим бетонную колонну с металлической арматурой, нагруженную через жесткую плиту силой F (рис.9.1). Примем следующие исходные данные (они приняты таковыми только для демонстрации метода отыскания внутренних сил).     Рис.9.1

Дано:

 

 

Найти: Силу сжатия бетона и силу сжатия арматуры .

Решение: Возьмем сечение:

Рис.9.2

 

На это сечение сила давления F распределяется не одинаково, хотя суммарно имеет место равенства:

- (9.1)

Здесь знак «-» поставлен потому, что имеет место сжатие сечения. Уравнение (9.1) имеет бесконечное множество решений. Уравнений равновесия для однозначного определения сил сжатия бетона и арматуры записать не удается. Поэтому задача называется статически неопределимой. Поскольку методами теоретической механики выбрать решение, отвечающее реальности, невозможно, то для этого используем свойство тел деформироваться, т.е. кинематические соображения и закон Гука. Из рисунка рис.9.1 видно, что и бетон, и арматура укорачиваются одинаково, т.е.

Это соотношение называется уравнением совместности деформации.

Подставим сюда закон Гука.

.

Найдем соотношение знаменателей:

.

Тогда получим:

.

Отсюда

.

Подставляя в (9.1) найдем:

.

Отсюда:

Вывод: хотя арматуры в колонне в два раза меньше чем бетона, но она воспринимает основную часть нагрузки (а именно - 71% нагрузки).

<== предыдущая лекция | следующая лекция ==>
При наличии перепада температур тела изменяют свои размеры, причем прямо пропорционально этому перепаду температур | Температурные напряжения
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 664; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.