КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Закономерности сложного напряженного состояния
Закономерности разрушения материала а) Напряжение на косых площадках. Рассмотрим простое растяжение стержня.
Рис.11.1 Вырежем элемент под углом
Рис.11.2
Выразим через s (известный закон параллелограмма, справедливый для сил, для напряжений не применим). Так как призма находится в покое, то .
Рис.11.3
Имеем: (11.1) По закону параллелограмма: (11.2) Подставляя сюда (11.1) получим: Из рис.11.1 следует, что Таким образом, получаем: (11.3) С учетом того, что s направлена по Oz, формулы запишем в виде: .
б) Ортогональное нагружение. Рис.11.4. Если рассматриваемый угол заменить углом , то выкладки будут совершенно аналогичными. Тогда получим: (11.4) Согласно рисунку 11.4, напряжение должно быть направлено вверх, а не вниз как на рис.11.2. Поэтому в (11.4) в выражении для поставлен знак “-“.
11.2. Зависимость и от касательных напряжений
Вырежем из тела призму (рис.11.5). Пусть на его грани действуют напряжения . В силу закона парности: Рис.11.5. Рис.11.6.
Выразим через Составим уравнения равновесия: Поделим эти два уравнения на (). Учитывая закон парности получим:
Отсюда, складывая, получим: Аналогично найдем:
Дата добавления: 2014-01-07; Просмотров: 307; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |