Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Парадоксы формулы Журавского

 

рис.15.18. рис.15.19.

 

Рассмотрим малый элемент, высота которого много меньше толщины полки (см. рис. 15.18.). По формуле Журавского.

(15.24)

С другой стороны, согласно рис.15.19 на верхней грани никаких воздействий нет, поскольку это свободная поверхность полки. Из условия равновесия по оси (рис. 15.19) получим, что .

Это противоречие вызвано тем, что в сопромате много пренебрежений малыми величинами. Если построить эпюру по высоте двутавра по формуле Журавского, то получим картину, изображенную на рис.15.20. В данной задаче в полке значения напряжения (вычисленные по формуле (15.24)) хоть и отличны от 0, но очень малы (обычно они составляют менее 5% от ).

Ясно, что в расчетах на прочность малые напряжения не используются, а их уточнение бессмысленно.

 
 

 

 


рис.15.20.

 

(Отмеченное выше противоречие аналогично противоречию вида 2.48 ≈ 2.5, из которого тоже вытекает, что якобы 0.02=0).

15.10. О максимальных касательных напряжениях(τzy) max

В большинстве случаев (τzy) max достигает наибольшего значения на уровне центра тяжести сечения. Это относится к сечениям прямоугольной, круглой, двутавровой формы и им подобным. Однако в нестандартных случаях необходимо строить эпюру касательных напряжений, т.к. максимальные касательные напряжения действуют на сечение не всегда на уровне центра тяжести. Например, нетрадиционное распределение по высоте сечения получается для балки с сечением вида креста. В области центра тяжести ширина сечения много больше, чем у вертикальных стенок. Значит, в формуле Журавского в знаменателе величина b будет большая, следовательно, и напряжения в полке (горизонтальной части сечения) будут малы. Тогда эпюра будет иметь вид, приведенный на рис. 15.21.

 

 
 

 


рис. 15.21

 

Таким образом, (τzy) max возникает не всегда на уровне центра тяжести сечений.

 

 

<== предыдущая лекция | следующая лекция ==>
Эффект Эмерсона | Разрушение изломом
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 675; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.