Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Правила Клебша




 

Правила Клебша сводятся к следующему.

1) выражаем через внешние силы, которые лежат только слева (или только справа) от сечения.

2) Если погонная сила q не доходит до правого конца, то ее доводим до этого правого конца и уравновешиваем ее снизу (рис.16.9)

 
 

 


Рис.16.9

3) Если имеется сосредоточенный момент m о, то его вклад записываем в виде , где а - расстояние до момента m о.

4) Интегрируем, не раскрывая скобок.

При выполнении этих условий все константы С на разных участках будут одинаковы. Аналогично будут одинаковы все константы D.

Справедливость правил Клебша доказывается непосредственной проверкой, то есть подстановкой решения в условия стыковки решения на границе участков. Рассмотрим, например, случай, приведенный на рис.16.12.

 
 

 

 


рис16.12

 

По правилам Клебша момент на участках (1), (2) запишем в виде:

(1):

(2):

Дифференциальные уравнения на участках:

(1)

(2)

Решение этих уравнений на участках (1), (2) имеет вид:

Участок (1): .

Участок (2): .

Отсюда видно, что при S = a получим равенство углов наклона и прогибов, вычисленных по разным формулам при любых С и D, т.е. условия гладкости изогнутой оси выполняются. Аналогично проверяются условия гладкости на границе участка, на которой заканчивается погонная сила q.

 

 

16.2.3 Условия для определения С и D

1) Первый случай. Рассмотрим балку, лежащую на двух опорах (см. рис.16.10).

 
 

 


Рис. 16.10

    Рис. 16.11

Из схемы видно, что

(16.13)

Таким образом, получаем систему уравнений для С и D.

2) Второй случай. Пусть балка заделана на расстоянии (консольная балка, см. рис.16.10).

В заделке не может появиться наклона оси, поэтому там не только нет прогиба, но и .

Таким образом, из схемы следует, что:

(16.14)

Опять получили два уравнения для С и D.

 

Пример вычисления прогиба

Пусть необходимо вычислить прогиб в центре балки длины l, загруженной погонной силой q. Решим эту задачу двумя способами.

Ввиду симметричности схемы можно сразу найти реактивные силы – они будут равны ql/ 2. Тогда изгибающий момент в сечении на расстоянии z от левой опоры будет равен

Первый способ. Использование дифференциального уравнения изогнутой оси балки. Интегрируем 2 раза: Константы интегрирования находим из условий закрепления: Находим прогиб в центре балки (при z = l /2):

 

Второй способ. Использование интеграла Мора

Прогиб в центре балки находим по формуле

Нарисуем эпюру изгибающих моментов М(T) от единичной силы Т =1 (см. рис.2)

Рассмотрим различные приближенные методы интегрирования.

1. Метод трапеций по 2-м участкам.

Метод дал ошибку в 17%

2. Метод трапеций по 4-м участкам.

Метод дал ошибку в 5%

3. Метод Симпсона по 2-м участкам.

Таким образом, метод Симпсона в этом примере дает точное решение.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 8677; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.