Снова рассмотрим изгиб балки под действием продольной центральной силы Р, но предварительно изогнутой приложенными по концам сосредоточенными моментами m (см. рис. 17.12). Этот момент может быть вызван внецентренным нагружением продольной силой Р, если он имеет эксцентриситет е, то m=Ре.
Рис. 17.12
Уравнение изогнутой оси примет вид
Деля на и принимая уже использованное выше обозначение , решение этого уравнения запишем в виде
Как и при выводе формулы Эйлера, константы В и С отыскиваем из условий закрепления:
(1): на левом краю
(2): на правом краю
Это дает:
(1): на левом краю
(2): на правом краю
Отсюда
(1):
(2):
При Р=Ркр , то есть при , имеем
Тогда из выражения для В вытекает, что
Следовательно, при Р→Ркр получаем неограниченно большие прогибы:
Таким образом, при внецентренном нагружении (или при наличии предварительного изгиба) балка может выдержать продольную сжимающую силу, которая не может быть больше Ркр
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление