КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Изучение динамики подземных вод и водных свойств толщ горных пород
Поиски и разведка минеральных вод Поиски и разведка термальных вод Крупные месторождения термальных вод приурочены к парогидротермальным системам и резервуарам с термальной водой («тепловым котлам»), которые характеризуются следующими особенностями:
В зависимости от природных физико-геологических условий осуществляют мелко-, средне-, крупномасштабные геофизические съемки с увеличенной густотой сети над резервуарами термальных вод. Основными методами поисков термальных вод являются аэрогеофизические (в том числе инфракрасные) съемки; шпуровая и скважинная терморазведка; электромагнитные зондирования (ЗСБ, ВЭЗ-ВП или МТЗ) и методы профилирования (ЕП, ВП); сейсморазведка МПВ и МОВ; гравимагнитные съемки. Среди скважинных методов, ведущими являются термические методы; вспомогательными методами - электрические. Поиски и разведка минеральных вод, пригодных для лечебных целей или являющихся источником химического сырья, - достаточно специфическая задача. Поиски таких месторождений имеют сходство с поисками месторождений пресных вод, а разведку проводят бурением скважин и проведением в них геофизических исследований. Среди методов ГИС основными являются резистивиметрия, электрические и ядерные. Важным этапом разведки грунтовых, пластовых и трещинно-карстовых вод является оценка их запасов, расходов, динамики. На этом этапе исследований весьма перспективны скважинные электрические методы, с помощью которых проводят литологическое расчленение разрезов и определяют такие динамические характеристики потока, как скорость фильтрации (или коэффициент фильтрации) и действительная скорость. Одним из давно применяющихся способов определения действительной скорости подземного потока по одиночной скважине является метод заряженного тела (МЗТ). На рис. 5.2 приведен пример определения действительной скорости подземных вод (V) этим методом, сводящимся к изучению эквипотенциальных линий электрического поля от Рис. 5.2. Пример определения направления и скорости движения подземных вод методом заряженного тела а - план эквипотенциальных линий, б - график смещения эквипотенциальных линий, в - график скоростей, - максимальное смещение изолиний за время после засолки помещенного в засоленную скважину источника постоянного тока на разных временах после добавления поваренной соли в поток подземных вод. Для оценки вертикальной фильтрационной неоднородности водоносного пласта и послойного определения коэффициентов фильтрации разрезов с ненапорными подземными водами используют резистивиметрические наблюдения в скважинах с искусственно засоленным подземным потоком. При этом с помощью резистивиметра периодически измеряют удельное сопротивление предварительно засоленной поваренной солью воды в стволе скважины. По сопротивлениям до засоления ρ0 и после засоления ρ1 и ρ2 определенным через время t1 и t2 после засолки, можно оценить скорость фильтрации по формуле: VФ = 2d/(t1 – t2) lg ρ2(ρ0 – ρ1)/(ρ0 - ρ2), (5.1) где d - диаметр скважины. На рис. 5.3 приведены результаты скважинных наблюдений на одном из участков Северо-Уральских бокситовых рудников (СУБР). В практике совместных гидрогеологических исследований динамики подземных вод широко используются определения водных и фильтрационных свойств по удельному электрическому сопротивлению слоев толщ горных пород. 5.5 Изучение условий обводнённости горных выработок При изучении обводненности горных выработок в ходе разработки месторождений твердых полезных ископаемых наиболее важной практической задачей является выявление обводненных зон для бурения водопонизительных скважин и проектирования других осушительных мероприятий. Особенно значительна обводненность месторождений, сложенных песчано-глинистыми или неравномерно закарстованными и трещиноватыми карбонатными породами. Обводненные зоны здесь носят локальный, незакономерный характер и приурочены к увеличениям в разрезе содержания толщ песчаных коллекторов или карстовых водонасыщенных полостей и трещиноватых зон. Рис. 5.3. Результаты скважинных геофизических исследований на одном из участков СУБР 1 - график кажущихся сопротивлений по данным каротажа КС; 2 - кривые резистивиметрических наблюдений; 3 - зона активной циркуляции подземных вод; 4 - границы слоев Основными полевыми методами изучения обводненности горных выработок являются ВЭЗ, ВЭЗ-ВП, МПВ, а также электромагнитные профилирования (ЭП, ЕП). Методика полевых работ сводится к площадным съемкам с густотой сети наблюдений (100-500) - (100-500) м. Глубинность разведки должна превышать проектируемые глубины выработок.
Дата добавления: 2014-01-07; Просмотров: 456; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |