Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Математические модели объектов проектирования на микроуровне




Диалоговое моделирование

Поскольку в методике макромоделирования присутствуют эвристические и формальные операции, целесообразно разрабатывать модели элементов в диалоговом режиме работы с ЭВМ. Используемый язык взаимодействия человека с ЭВМ должен иметь возможность оперативного ввода исходной информации о структуре модели, об известных характеристиках и параметрах объекта, о плане экспериментов. Диалоговое моделирование должно иметь программное обеспечение, в котором реализованы алгоритмы статистической обработки результатов экспериментов. В данное программное обеспечение должен входить расчет выходных параметров эталонных моделей и создаваемых макромоделей, в том числе расчет параметров по методам планирования экспериментов и регрессионного анализа. В методику должны быть включены алгоритмы методов поиска экстремума, расчета областей адекватности и др. Пользователь, разрабатывающий модель, может менять уравнения модели, задавать их в аналитической, схемной или табличной форме, обращаться к нужным подпрограммам и тем самым оценивать результаты предпринимаемых действий, приближаясь к получению модели с требуемыми свойствами.

Математические модели деталей и процессов на микроуровне отражают физические процессы, протекающие в сплошных средах и непрерывном времени. Независимыми переменными в этих моделях являются пространственные координаты и время. В качестве зависимых переменных выступают фазовые переменные, такие как потенциалы, напряженности полей, концентрации частиц, деформации и т. п. Взаимосвязи переменных выражаются с помощью уравнений математической физики — интегральных, интегро-дифференциальных или дифференциальных уравнений в частных производных. Эти уравнения составляют основу ММ на микроуровне.

Для получения законченной математической модели, используемой в задачах проектирования, необходимо дополнительно выполнить ряд процедур:

· выбрать краевые условия. Краевые условия представляют собой сведения о значениях фазовых переменных и (или) их производных на границах рассматриваемых пространственных и временных областей;

· дискретизировать задачу. Дискретизация подразумевает разделение рассматриваемых пространственных и временных областей на конечное число элементарных участков с представлением фазовых переменных конечным числом значений в избранных узловых точках, принадлежащих элементарным участкам;

· алгебраизировать задачу — аппроксимировать дифференциальные и интегральные уравнения алгебраическими.

Используют два основных подхода к дискретизации и алгебраизации краевых задач, составляющие сущность методов конечных разностей (МКР) и конечных элементов (МКЭ). С помощью любого из этих методов формируется окончательная модель, исследуемая при выполнении различных процедур анализа проектируемого объекта.

Пользователь САПР средствами входного языка задает исходную информацию о конфигурации проектируемого объекта, о способе дискретизации — разделения среды на элементы, — о физических свойствах участков среды. Формирование модели объекта, т. е. разделение среды на элементы, выбор математических моделей элементов из заранее составленных библиотек, объединение моделей элементов в общую систему уравнений, так же как и решение получающихся уравнений, осуществляется автоматически на ЭВМ.

Основные уравнения математической физики, используемые в моделях проектируемых объектов. Процессы, протекающие в техническом объекте при его функционировании, по своей физической природе могут быть разделены на:

· электрические;

· тепловые;

· магнитные;

· оптические;

· механические;

· гидравлические и т. п.

Каждому типу процессов в математической модели соответствует своя подсистема, основанная на определенных уравнениях математической физики. Рассмотрим примеры уравнений, составляющих основу математических моделей технических объектов на микроуровне.

Электрические процессы в современных полупроводниковых приборах с достаточной точностью удается описать с помощью уравнений непрерывности и Пуассона. Уравнения непрерывности выражают скорости изменения концентраций свободных носителей заряда и записываются отдельно для дырок и электронов:

(15.6)
(15.7)
       

где p и n — концентрации дырок и электронов, соответственно; q — заряд электрона; gP и gn — скорости процесса генерации-рекомбинации, соответственно, дырок и электронов;

(15.8)
(15.9)
       

где q — плотности дырочного и электронного токов; — подвижности; Dp, Dnкоэффициенты диффузии дырок и электронов; — электрический потенциал.

Уравнения (15.8)-(15.9) показывают, что причинами изменения концентрации носителей могут быть неодинаковость числа носителей, втекающих (и вытекающих) в элементарный объем полупроводника (тогда ), и нарушение равновесия между процессами генерации и рекомбинации носителей. Уравнения (15.8) и (15.9), называемые уравнениями плотности тока, характеризуют причины протекания электрического тока в полупроводнике: электрический дрейф под воздействием электрического поля () и диффузию носителей при наличии градиента концентрации. Уравнение Пуассона характеризует зависимость изменений в пространстве напряженности электрического поля от распределения плотности электрических зарядов :

(15.10)

где — относительная диэлектрическая проницаемость среды; — диэлектрическая постоянная.

В качестве краевых условий в моделях полупроводниковых приборов используют зависимости потенциалов на контактах от времени, принимают значения концентраций носителей на границе между внешним выводом и полупроводником равными равновесным концентрациям ро и n0, для границ раздела полупроводника и окисла задаются скоростью поверхностной рекомбинации gS, что определяет величины нормальных к поверхности раздела составляющих плотностей тока Jp и Jn и т. д.

Результат решения уравнений непрерывности и Пуассона при известных краевых условиях — это поля потенциала и концентраций подвижных носителей в различных областях полупроводниковой структуры. Знание этих полей позволяет оценить электрические параметры прибора.

В основе моделей диффузионных процессов, используемых, в частности, для описания технологических операций диффузии примесей при изготовлений интегральных схем и полупроводниковых приборов, лежит уравнение диффузии

(15.11)

где N — концентрация примеси; D — коэффициент диффузии.

Краевые условия представлены зависимостью распределения примеси N в объеме полупроводника в начальный момент времени и зависимостью поверхностной концентрации от времени.

На использовании закономерностей протекания тепловых процессов основано действие многих теплофизических установок. В РЭС полезные свойства обусловлены закономерностями электрических процессов, однако рассеяние мощности и изменения температуры оказывают заметное влияние на характер функционирования аппаратуры. Поэтому в моделях РЭС, как и в моделях многих устройств иной природы, приходится учитывать тепловые процессы. Теплоперенос в твердых телах описывается уравнением теплопроводности

(15.12)

где T — температура; С — удельная теплоемкость; р — плотность; — коэффициент теплопроводности; gQ — количество теплоты, выделяемой в единицу времени в единице объема.




Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 919; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.