Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Металлы, проводники и диэлектрики в зонной теории

Более детальное представление о свойствах твердых тел и в частности об электропроводности металлов дает зонная тео­рия, — часть квантовой механики. Важное место в зонной те­ории принадлежит принципу запрета Паули, который не до­пускает возможности существования в пределах одного крис­талла более двух электронов с одинаковой энергией. Такие элек­троны находятся в одинаковых состояниях, и им соответствует одинаковый набор квантовых чисел кроме спинового. (Спино­вые квантовые числа имеют противоположные знаки.) Рассмот­рим качественное содержание теории. Главным выводом зон­ной теории является утверждение о том, что электроны в от­дельном атоме могут иметь лишь некоторые определенные значения энергии — разрешенные дискретные уровни энер­гии. Все остальные значения энергии оказываются запрещен­ными. А соответствующие им интервалы энергий — запрещен­ными зонами.

При рассмотрении отдельных изолированных атомов зап­рет Паули относится к электронам одного атома — в каждом из атомов могут быть только два электрона, находящихся в одинаковых состояниях. При объединении N атомов в крис­талл происходит их взаимодействие друг с другом и запрет Паули распространя­ется на все разрешенные значения энер­гии. В результате это­го каждый энергети­ческий уровень атома расщепляется на N новых, близко распо­ложенных энергети­ческих уровней 1,3и5,изображенных на рисунке.

 

При этом на каждом энергетическом уровне может находиться максимум два электрона с противоположными спинами, ми­нимум — ноль. Таким образом, в кристалле образуются поло­сы 1, 3 и 5 близко расположенных энергетических уровней. Они называются зонами разрешенных значений энергий. Со­седние уровни в зоне разделяет энергия по­рядка 1022эВ.

Разрешенные энер­гетические зоны разде­лены полосами 2 и 4,соответ­ствующими таким зна­чениям энергии, кото­рые электроны не мо­гут иметь.

Эти полосы,названные зонами запрещенных значений энергии, изображены на рисунке

 

Ширина запрещенных зон соизмерима с шириной разрешенных зон энергии. С уве­личением энергии ширина разрешенных зон возрастает, а ширина запрещенных энергетических зон убывает и может стать даже равной нулю. Разрешенные энергетические зоны в твердом теле могут быть по-разному заполнены электронами. Возможны случаи, когда они полностью свобод­ны или заполнены. Возможны также переходы электронов внутри зоны и из одной зоны в другую. Для перехода электро­на из нижней зоны в соседнюю верхнюю необходимо сообщить электрону энергию, не меньшую, чем ширина запрещенной зоны. Для внутризонных переходов электрона достаточно, например, энергии электрического поля 10-4—10-8 эВ. При подводе теплоты электронам может быть сообщена раз­личная энергия, достаточная для внутри- или меж­зонных переходов. Понятия про­водника, диэлектрика и полупровод­ника в зонной тео­рии объясняется различным запол­нением электрона­ми разрешенных зон и шириной запрещенных зон.

 

Верхнюю из полностью за­нятых электронами зон разрешенных значений энергии называют валентной. Следующую за ней разрешенную зону называют зоной проводимости. Она может быть полно­стью свободной от электронов (рис. а, в) или частично занятой ими (рис. б).

Случай, когда зона проводимости полностью свободна от электронов, отвечает представлению о полупроводниках и ди­электриках. Конкретный тип твердого тела определяется ши­риной запрещенной зоны W между валентной зоной и зоной проводимости.

Если ширина запрещенной зоны кристалла составляет не­сколько электрон-вольт, то энергии теплового движения ва­лентных электронов недостаточно для их перевода из валент­ной зоны в зону проводимости. Твердое тело является диэлек­триком.

Если же запрещенная зона узка и составляет W ≤ 1 эВ, то для перевода валентных электронов в зону проводимости дос­таточно их теплового возбуждения за счет внешнего источни­ка. Твердое тело является полупроводником.

Второй случай характерен для проводников электрическо­го тока и теплоты. Однако твердое тело — проводник и в дру­гом случае, когда валентная зона перекрывается зоной прово­димости (Be, Cd, Mg, Zn). Это приводит к частичному заполнению валентными электронами области перекрытия зон. По существу такая гибридная зона является зоной проводимости.

Итак, металлы отличаются от диэлектриков с точки зре­ния зонной теории тем, что уже при О К в зоне проводимости у металлов есть электроны, а у диэлектриков они отсутствуют. Диэлектрики же отличаются от полупроводников шириной запрещенных зон. Для диэлектриков она широка. Например, для NaCсоставляет W = 6 эВ. Для полупроводников — узка. Например, для германия W = 0,72 эВ. При 0 К полупроводники не содержат свободных электронов и ведут себя, как диэлектри­ки. Однако в отличие от диэлектриков у полупроводников с повышением температуры возникает проводимость, зависящая от ширины запрещенной зоны.

Проводникам соответствует удельное электрическое сопро­тивление порядка 10-5, диэлектрикам — 108 Ом-м. Большое число веществ, удельное сопротивление которых изменяется в интервале 10-5—108 Ом-м, называют полупроводниками.Важ­нейшими полупроводниками являются германий, кремний, теллур, селен и др.

1. Полупроводники. Собственная и примесная проводимость

Различают собственные и примесные полупроводники. Хи­мически чистые полупроводники называют собственными, а их электропроводность — собственной проводимостью. Собствен­ными полупроводниками являются Ge, Se, химические соеди­нения JnSb, GaAs, CdS и др. На внешней оболочке атомов гер­мания и кремния находятся четыре валентных электрона, ко­торые ковалентно связаны с валентными электронами соседних атомов (рис.a).

 

 

 

Очевидно, что в химически чистых крис­таллах таких полупроводников отсутствуют свободные валент­ные электроны. При подводе к германию энергии в количестве не меньше, чем ширина W запрещенной зоны, происходят нарушение ковалентной связи в атомах кристалла и переход электронов из валентной зоны в зону проводимости (рис б и следующий рисунок).

 

 

Величину W называют энергией активации собственной проводимости. Проводимость собственных по­лупроводников, обусловленную электронами, на­зывают электрон­ной проводимосью или проводимостью п -типа (от лат. negative — отрицательный).

Нарушение ковалентной связи в атомах кристалла полу­проводника при переходе электрона из валентной зоны в зону проводимости означает, что в оставленном им месте воз­никает избыток положи­тельного заряда, получив­ший название дырки. По­ложительная дырка, явля­ясь положительным зарядом, по величине рав­на заряду электрона. С по­зиций зонной теории это означает, что в валентной зоне крис­талла появился вакантный энергетический уровень.

Во внешнем энергетическом поле на вакансию — освободившееся от электрона место, дырку — перемещается элект­рон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон и т.д. Движение электронов прово­димости и дырок в полупроводнике при отсутствии электри­ческого поля является хаотическим. При наличии внешнего электрического поля электроны проводимости движутся про­тив поля, а дырки по направлению поля. Электропроводность собственных полупроводников, обусловленная перемещением квазичастиц — дырок, называют дырочной проводимостью или проводимостью р-типа (от лат. positive — положительный).

Таким образом, в собственных полупроводниках имеет место двойной механизм проводимости — электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне. А следовательно, равны и концентрации электро­нов проводимости пе и дырок пр. Последние быстро возрастают с повышением температуры по закону

пе =п р с ехр(-W/(2kT)), м-3,

где с — постоянная, зависящая от температуры и динамической (эффективной) массы квазичастицы (электрона прово­димости и дырки), участвующей в электропроводности. Удельная электропроводность полупроводников также растет с повышением температуры γ = γоехр(- W/(2kT)), (Ом-м)-1, а удельное сопротивление полупроводников резко уменьшается = о ехр(W/(2kT)), Омм, где γо и о — индивидуальные постоян­ные полупроводника. Подобной зависимостью у и р от темпе­ратуры полупроводники существенно отличаются от металлов. В полупроводниках наряду с процессом генерации электро­нов проводимости и дырок идет одновременно и обратный про­цесс рекомбинации. Потерявшие часть своей энергии электро­ны проводимости захватываются дырками. Скорость рекомби­нации и скорость образования, электронов проводимости и дырок одинаковы.

В германии при комнатной температуре одна пара носите­лей заряда приходится примерно на 109 атомов.

Полупроводники имеют высокое удельное сопротивление и
его резко выраженную зависимость от температуры. Это по­
зволило использовать полупроводники в термометрах, назы­ваемых термисторами. Они имеют малые размеры и чрезвы­чайно высокую чувствительность — термистор реагирует даже на изменение освещенности. Может быть использован для из­мерения температуры очень малых объектов. Создан (1997 г.)стабильный высокотемпературный термистор до 1000 °С для
измерения температуры продуктов сгорания. Это полупровод­никовая керамика, нелинейно меняющая электросопротивле­ние с температурой. Термистор может быть использован в си­ловых установках самолетов.. -

Идеально чистых полупроводников в природе нет. Нали­чие даже небольшой примеси в полупроводнике оказывает значительное влияние на его проводимость. Например, введе­ние в кремний примерно 0,001% бора увеличивает его элект­ропроводность в 1000 раз. Электропроводность полупроводни­ков, обусловленную примесями, называют примесной прово­димостью, а полупроводник — примесным. Примесями явля­ются атомы или ионы посторонних элементов, различные дефекты и искажения кристаллической решетки. Некоторые примеси обогащают полупроводник свободными электронами, обеспечивая ему в электрическом поле электронную проводи­мость. Примеси, являющиеся источником электронов, назы­вают донорами, а полупроводники — электронными или полу­проводниками п -типа. Таким образом, электронная примесная проводимость возникает в полупроводниках с примесью, валентность которой на единицу больше валентности основ­ных атомов. Например, при замещении в решетке германияодного четырехвалентного атома Ge пятивалентным атомом мышьяка один электрон атома примеси не может образовать ковалентную связь с атомами германия и ока­зывается лишним (см.рисунок).

 

При тепловых колебаниях решетки он способен оторваться от атома и стать свободным. Образование сво­бодного электрона не нарушает ковалентной связи атомов. Избыточ­ный положительный заряд, возни­кающий вблизи атома примеси, связан с атомом примеси и поэтому перемещаться по решетке не может.

Введение примеси искажает энергетическое поле кристалла и приводит к возникновению в запрещенной зоне энергетичес­кого уровня Д свободных электронов мышьяка (рис.).

 

 

Такой уровень называют донорным или примесным уровнем. Этот уровень в рассматривае­мом случае располагает­ся от дна зоны проводимо­сти на расстоянии WД = = 0,015 эВ. Поскольку WД «W, то уже при обычных температурах энергия теплового движения достаточ­на для перевода свободных электронов с уровня доноров в зону проводимости.

Есть и другой тип примеси, который обогащает полупро­водник дырками и обеспечивает ему в электрическом поле дырочную проводимость. Например, при замещении в решет­ке германия одного четырехвалентного атома Ge трехвалент­ным атомом бора не хватает одного электрона для образования насыщенной ковалентной связи. Недостающий четвертый элек­трон может быть заимствован у соседнего атома основного веще­ства — германия, где соответственно образуется дырка.Последовательное заполнение образующихся дырок электронами эквивалентно движению дырок и приводит к электропро­водности в полупроводнике. Дырки при этом не остаются локали­зованными, а перемещаются в решетке германия как свободные положительные заряды. Отрицательный же заряд, возникаю­щий вблизи атома бора, связан с ним и по решетке переме­щаться не может. Введение трехвалентного бора в решетку германия приводит к возникновению в запрещенной зоне энер­гетического уровня, не занятого электронами (следующий рисунок).

 

Та­кой уровень называют ак­цепторным, и располагает­ся он выше верхнего края валентной зоны основно­го кристалла. Поскольку А «W, то уже при обычных температурах электроны из валентной зоны переходят на акцеп­торный уровень, вступают в связь с атомами бора и теряют способность к перемещениям по решетке германия. В проводимости полупроводника они не участвуют. Носителя­ми тока являются дырки, возникающие в валентной зоне.

Таким образом, дырочная проводимость возникает в про­водниках с примесью, валентность которой на единицу мень­ше валентности основных атомов. Носители электрического или теплового тока — дырки.

Примесные полупроводники с такой проводимостью назы­ваются дырочными или полупроводниками р -типа. Примеси, захватывающие электроны из валентной зоны полупроводни­ка, называют акцепторами, а энергетические уровни приме­сей — акцепторными.уровнями.

Итак, собственная проводимость полупроводников осуществ­ляется одновременно электронами и дырками, а примесная обус­ловлена в основном носителями одного знака: Электронами — в случае донорной примеси, и дырками — в случае акцепторной.

 

Электронно-дырочный переход.Кристаллические диоды

В области соприкосновения двух примесных полупровод­ников, один из которых обладает п -проводимостью, а другой р -проводимостью, имеет место явление, называемое электронно-дырочным переходом или р-п -переходом. На этом явлении основана работа полупроводниковых приборов.

Каждый из полупроводников имеет определенную концен­трацию свободных электронов и дырок. Для упрощения рас­суждений будем считать концентрацию электронов и дырок одинаковой. В донорном полупроводнике с п -проводимостью — более высокая концентрация свободных электронов с работой выхода Ап и уровнем Ферми WFn, В акцепторном полупровод­нике с р -проводимостью — более высокая концентрация ды­рок с работой выхода Ар и уровнем Ферми W. Уровнем Фер­ми называют максимальную энергию электронов (дырок) при температуре Т = О К. При контакте полупроводников возникает диффузия свободных электронов из полупроводника с п -про­водимостью в полупроводник с р -проводимостью (п→р -пере-ход) и противоположная по направлению диффузия дырок (р→п -переход). Это приводит к образованию у границы в области отрезка аb (cм.рисунок) полупроводника с проводимостью п -типа и полупроводника с проводимостью

 

 

р-типа избыточных за­рядов противоположных знаков. Таким образом, в зоне кон­такта образуется двойной электрический слой. Этот слой со­здает контактное электрическое поле с напряженностью Ек и разностью потенциалов на границах слоя. Поле препятствует дальнейшему встречному движению электронов и дырок. При определенной ширине (~10-7 м) р-п -перехода наступает состо­яние равновесия, характеризуемое выравниванием уровня Ферми для обоих полупроводников. При этом на участке ис­кривляются энергетические зоны, в результате чего возникает потенциальный барьер как для электронов, так и для дырок. Высота потенциального барьера е определяется первоначаль­ной разностью уровней Ферми (предыдущий рисунок). Итак, состоянию равновесия соответствует сформировавшийся запирающий слой. Последний обладает повышенным сопротивлением по сравнению с сопротивлением остальных объемов полупроводников. Потенциальный барьер такого слоя способны преодолеть элек­троны и дырки с кинетической энергией, соответствующей температурам в несколько тысяч Кельвинов. Следовательно, при обычных температурах пограничный двойной электричес­кий слой является непроницаемым для перехода электронов в направлении п→р и дырок в направлении р→ п. Поэтому, по­граничный слой и называется запирающим.

Однако сопротивление запирающего слоя можно регули­ровать с помощью внешнего электрического поля. Если на­пряженность внешнего элек­трического поля совпадает по направлению с напряженно­стью контактного электричес­кого поля Ек (как на рисунке), то происходит увеличение вели­чины запирающего слоя

 

 

и, следовательно, его сопротив­ления. Такое направление внешнего поля называют за­пирающим. В этом направле­ний ток через p-n -переход не проходит. С изменением поляр­ности внешнего поля (как на следующем рисунке) его напряженность Е проти­воположно направлена полю контактного слоя.

 

 

Встречное дви­жение электронов и дырок под действием внешнего поля происходит во всем объеме полупроводников и увеличивает число подвижных носителей на контакте. Толщина и сопротивление контактного слоя уменьшаются, и электри­ческий ток проходит че­рез p-n -переход. Таким образом, p-n -переход рабо­тает как выпрямитель, пропуская ток только из р -области в п -область.

Описанное вентильное действие р-п -перехода ана­логично выпрямляющему действию двухэлектродной лампы — диода. Полупроводниковый (кристаллический) диод содержит один p-n -переход, кристаллический триод, называемый тран­зистором, два р-п -перехода. Транзистор представляет собой р-п-р - или п-р-п- структуру, или соединение противоположно включенных диодов. Транзисторы р-п-р- типа применяются чаще, так как они проще в изготовлении. Диод служит для выпрямления тока. Кристаллический диод обладает рядом пре­имуществ в сравнении с электронной лампой: малые габариты, высокий КПД и срок службы, отсутствие инерционности и др. Недостатки — чувствительность к температуре. Рабочий ин­тервал температур 70-120 °С. Транзистор может работать как усилитель мощности и генератор электрических колебаний. Для изготовления транзисторов используются германий и крем­ний. Их достоинство — высокая механическая прочность, хи­мическая устойчивость и значительная подвижность носите­лей тока.

 

 

<== предыдущая лекция | следующая лекция ==>
Современные промышленные взрывчатые вещества | Политика
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 3379; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.053 сек.