Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение предиката. Кванторы




Лекция 2. ЛОГИКА ПРЕДИКАТОВ

ТЕОРИЯ АЛГОРИТМОВ

Определение 2.1. Предикатом P (x 1, x 2,..., xn) называется функция, аргументы которой определены на некотором множестве М, x 1, x 2,..., xn M, а сама она принимает два значения: И (истина) и Л (ложь). Таким образом, предикат осуществляет отображение М {И, Л}.

Переменные x 1, x 2,..., xn называются предметными переменными, а множество Mпредметной областью.

Если все переменные x 1, x 2,..., xn принимают конкретные значения, то предикат есть не что иное, как высказывание, Таким образом, высказывание является частным случаем предиката. Можно сказать, что предикат есть высказывание, зависящее от параметров.

Пример 2.1.

а) P (x) = “ x – четное число”. Здесь М – множество целых чисел, x M.

б) A (x, y, z) = “ x, y, z лежат на одной окружности”. Здесь М – множество точек плоскости, x, y, z M

в) B (x, y) = “ x старше y ”. Здесь M – множество людей, x, y M.

Предикат от n переменных называется n-местным предикатом. Высказывание есть 0-местный предикат.

Как видно из примера 2.1, одноместный предикат отражает свойство некоторого объекта, а многоместный предикат выражает отношение между многими объектами.

Над предикатами можно производить обычные логические операции и получать при этом другие предикаты. Таким образом можно говорить об алгебре предикатов.

Пример 2.2.

Пусть A (x) – предикат “ x делится на 3”, а B (x) – предикат “ x делится на 2”. Тогда A (x) V B (x) – предикат “ x делится на 3 или на 2”, а A (x) & B (x) – предикат “ x делится на 3 и на 2”.

Кроме операций логики высказываний, в логике предикатов используются особые логические символы – кванторы (были введены немецким математиком Г. Фреге).

Квантор общности. Пусть P (x) – некоторый предикат, определенный для каждого x Î М. Тогда выражение " xP (x) является истинным высказыванием, если P (x) истинно для всякого x Î М и ложным в противном случае. Символ " x называется квантором общности. Выражение " xP (x) читается: “Для всех x имеет место P (x)”. В обычной речи квантору общности соответствуют слова: все, всякий, каждый, любой. Возможно отрицание квантора общности: Ø" xP (x): “Не для всех x имеет место P (x)”.

Пример 2.3.

Пусть P (x) – предикат “ x – четное число”. Тогда " xP (x) есть высказывание “Всякое x – четное число" = “Все числа – четные", которое истинно на множестве M четных чисел и ложно, если М содержит хотя бы одно нечетное число, например, если M – множество целых чисел. Отрицание Ø" xP (x) есть высказывание “Не всякое x – четное число" = “Не все числа – четные", которое истинно на множестве целых чисел и ложно на множестве четных чисел.

Квантор существования. Пусть P (x) – некоторый предикат, x Î М. Тогда выражение $ xP (x) является истинным высказыванием, если P (x) истинно хотя бы для одного x Î М и ложным в противном случае. Символ $ x называется квантором существования. Выражение $ xP (x) читается: “Существует x, для которого имеет место P (x)”. В обычной речи квантору существования соответствуют слова: некоторый, несколько. Возможно отрицание квантора существования: Ø$ xP (x): “Не существует x, для которого имеет место P (x)”.

Кванторы существования и общности называются двойственными кванторами.

Пример 2.4.

Пусть, как и в примере 2.3, P (x) – предикат “ x – четное число”. Тогда $ xP (x) есть высказывание “Некоторые x – четные числа” = “Существуют четные числа”, которое истинно на множестве M, содержащем хотя бы одно четное число и ложно, если М содержит только нечетные числа. Высказывание Ø$ xP (x) = “Неверно, что некоторые x – четные числа” = “Не существует четных чисел” истинно на множестве M, содержащем только нечетные числа и ложно, если М содержит хотя бы одно четное число.

Буква x, стоящая справа от квантора, называется кванторной переменной и должна присутствовать обязательно. Переменная, стоящая под знаком квантора, называется также связанной переменной. Несвязанная переменная называется свободной. Выражения " xP (x) и $ xP (x) не зависят от x и имеют вполне определенные значения. Поэтому переименование связанной переменной, т. е. переход, например, от выражения " xP (x) к " yP (y) не меняет его истинностного значения.

Кванторы могут применяться и к многоместным предикатам. При этом число свободных переменных уменьшается на единицу. Одноместный предикат при связывании переменной квантором становится 0-местным предикатом, т. е. высказыванием.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 518; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.