Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аппроксимация переходной функции решением дифференциального уравнения для системы без запаздывания




Графические методы построения динамических моделей.

 

 

При нанесении на вход объекта единичного скачкообразного возмущающего воздействия X(t)=1 получают график переходной функции Y(t) (рис. 5).

Передаточная функция объекта, представляющего собой, например, апериодическое звено I-го порядка, имеет вид:

W(P)=k/(T*P+1) (4.1.)

 

где T – постоянная времени объекта;

k=y() - коэффициент усиления;

y() - установившееся значение выходной величины.

Этой передаточной функции соответствует дифференциальное уравнение:

T* +y(t)=k*x(t) (4.2.)

решение которого может быть записано в виде

y(t)=k*x(t)*(1-e) (4.3.)

 

Постоянная времени Т определяется из графика переходного процесса. Для этого надо провести касательную к кривой y(t) в начале координат; отрезок по оси времени от нуля до точки пересечения касательной и линии y=y() равен Т.

 

 

Постоянную времени Т можно определить также, учитывая, что y(T)=0.63*y(). Для этого по графику переходного процесса находят значение t=T, при котором y(t)=0.63*y().

Аппроксимация переходной функции решением дифференциального уравнения для системы с запаздыванием.

 

Аппроксимирующая передаточная функция для системы первого порядка с запаздыванием имеет вид:

 

W(P)= (4.4.)

 

а решение линейного дифференциального уравнения первого порядка с запаздыванием будет

 

y(t)=0; 0 (4.5.)

y(t)=k*x(t)*(1-); t

 

где Т - постоянная времени;

- время запаздывания;

К - коэффициент усиления.

Интерполяционный метод определения параметров Т и заключается в следующем. На нормированной кривой переходного процесса, у которой по оси ординат откладывают величину y(T)/y(), выбирают две точки А и В (рис. 6.)

 

Желательно, чтобы точка А была расположена вблизи точки перегиба кривой, а ордината y(А) равнялась 0.8-0.9. Рассматривая точки А и В как интерполяционные узлы кривой, можно определить параметрами переходной функции:

 

(4.6.)

 

(4.7.)

Другой способ аппроксимации переходной функции, являющийся развитием метода Орманна, заключается в следующем. По нормированной кривой y(t) определяется время t 7 являющееся корнем уравнения

k*x(t)*(1-)=0.7

 

 

и время t, удовлетворяющее равенству y(t)=0.33.

Далее вычисляются время запаздывания :

(4.8.)

и постоянная времени Т:

(4.9.)

Для проверки полученных результатов сравнивают ординаты заданной переходной функции при t, с соответствующими значениями ординат аппроксимирующей кривой: h4 = 0,33; h8 = 0,55 и h20 = 0,87

 

Аппроксимация переходной функции решением дифференциального уравнения второго порядка.

Передаточная функция для объекта второго порядка записывается в виде

(4.10)

Переходная функция объекта может быть аппроксимирована решением линейного дифференциального уравнения второго порядка:

(4.11)

Так как время чистого запаздывания t и коэффициент усиления K определяются известными приемами по переходной функции, то далее будем рассматривать только нахождение постоянных времени T 1 и T 2.

Один из способов определения связан с графическими построениями. Исходная переходная функция нормируется путем деления ординат на величину

y(t)=y*(t)/y(Tуст) (4.12)

- нормированная функция;

- исходная функция;

Туст - время, при котором устанавливается постоянное значение .

На графике y(t) определяется точка перегиба w, через которую проводится касательная до пересечения с осью абсцисс и горизонтальной прямой y(Tуст)» K (рис. 7).

Точка перегиба кривой y(t) представляет собой точку, в которой производная dy(t)/dt имеет максимальное значение. Так как переходные функции реальных объектов часто не имеют явно выраженной точки перегиба, то определение ее координат можно осуществлять следующим образом.

 

 

В средней, наиболее быстро изменяющейся части графика y(t) берется несколько ординат y(tg) = yg g = 0, 1, 2,..., q; q обычно не более 6-7; tg - tg-1 = Dt=const и вычисляются первые разности g = 0, 1, 2,..., q-1. Далее находится максимальная величина Dyg и соответствующее ей значение времени tw= tg - 0,5*Dt, а затем ордината yw.

Из графика y(t) непосредственно находятся значения T1, T2 и а. Затем из точки I пересечения касательной А с осью абсцисс восстанавливается перпендикуляр высотой g

(4.13)

Через точку 3 проводится прямая линия B, паралелльная касательной A, и находится время Tв. Предположив, что T2 < T1, вычисляют их значения из эмпирических соотношений

 

 

(4.14)

при a <= 0,05

(4.15)

T1= T 0 - Tв при a > 0,005

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1090; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.